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"The first attempt at a theory of transverse vibrations of elastic discs was made known by Sophie Germain. In 1811, she
submitted a paper to the Paris Academy, which had announced a prize for such a theory. In her work, a hypothesis was made
about the forces that resist the shape changes of a disc, and from this hypothesis, a partial differential equation for the vibrations
was derived. The author made an error in her calculations; Lagrange, who was part of the committee evaluating the paper, derived
the differential equation from her hypothesis, which had to give the correct results. This is the same equation that is still recognized
as the correct one today. However, the boundary conditions were still missing, through which the solution of the partial differential
equation would become specific. Sophie Germain derived these boundary conditions in a second paper, which she submitted to
the Academy two years later, based on the same hypothesis. They were of such a nature that the author could find the solution of
the problem for the case of rectangular discs. She compared her theoretical results for this case with observations and found a
correspondence, which seemed to confirm her hypothesis. In a third paper, submitted to the Academy in 1815, she extended her
hypothesis so that it could also derive the theory of vibrations of plates that are curved in their natural state. She was able to carry
out the calculation for cylindrically curved plates and also found theoretical results here that were in agreement with experimental
results."
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The limits and the extent of the question of elastic surfaces, and the general equation of these surfaces” appeared in
Paris in 1826.

Regardless of the confirmations that Sophie Germain’s theory has experienced through experiments, it is not correct;
because one can draw conclusions from it that are in obvious contradiction with reality. | limit myself to showing this by
considering a plate that is in its natural state. The conclusions, which help Sophie Germain derive her laws for the

deformation caused by external forces on such a plate and for the vibrations it undergoes, are essentially as follows.

In every element of the plate that has changed its shape, a force is generated that strives to return the same element to
its original form. The condition of equilibrium of the plate is that the moment of all the forces generated in the same
element and the moment of the given external forces yield a vanishing sum. Let € be the thickness of the plate, df an
element of its middle surface; the force generated in the element edf will be greater, the greater the difference between
the shape of df after the deformation and the original shape of this element. If one had a suitable measure for this
difference, one could assume this force proportional to it; let u be such a measure, then this force would be
Niudf
where N2 is a constant dependent on the thickness and the nature of the plate. The effort of this force goes towards
reducing u; therefore, the moment of the same force would be:

N%ududf;

where du denotes the virtual change of w.

If one applies the corresponding consideration to the case of an elastic rod, one arrives at the correct end equations
when one sets u = the reciprocal curvature radius of the middle line of the rod; Sophie Germain believed that in the
case of a disk, © = the sum of the reciprocal principal curvature radii of the middle surface could be assumed. If these
principal curvature radii are 1 and 2, she obtained for the moment of the force generated in the element the

expression

2 1 1 1 1
N (5 +3)o (34 3)dr
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And as the condition of equilibrium of the plate, the equation:

1 1 1 1
5P N2f(— | —)5(— | —)dfzﬂ,
©1 ©2 ©1 w2

where d P denotes the moment of the given external forces.

To show that this condition cannot possibly be the correct one, | consider the case where a disk is brought very slightly
out of its original shape by forces acting perpendicularly to its interior; for simplicity, | assume the edge of the disk to
be free. The middle surface in its original shape is the 2y plane of a rectangular coordinate system, z the displacement
perpendicular to it, which the point (z, y) of the middle surface has suffered, Z the force acting in the direction of z

on a line of the plate, which is pulled in the same direction through the point (z, ). Setting

o o
922 6y2_u’

the equilibrium condition for w yields the partial differential equation

*u  0*u
2 - - —
N (axz 392) ?

and the boundary conditions

u—=20, 8_u = 0;
on

where 1 denotes the normal to the contour of the middle surface. Now the solution of the differential equation for u is
already completely determined by the first of the two boundary conditions; it is therefore generally not possible to find
an u that also satisfies the second boundary condition; and consequently there would be no equilibrium for the plate. If
the given forces Z were such that a function u could be found that satisfies both boundary conditions, then one would
have to determine the shape of the middle surface by substituting this value of u into the differential equation for z
and determining z from the same. This equation is satisfied by infinitely many functions; it would therefore give
infinitely many equilibrium states of the plate. This case would occur, for example, if no forces Z were present; if the

plate were left in any shape, for which

o o
dz?  9y:
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without the intention of showing that it should return to its original shape. According to this equilibrium condition, the
plate must be in equilibrium even if it has suffered finite curvatures, without the influence of external forces, as soon as

for all points of its middle surface the sum of the reciprocals of the principal curvatures vanishes.

A second theory of the equilibrium and motion of elastic plates was proposed by Poisson and developed in his famous
treatise "Sur I'équilibre et le mouvement des corps élastiques” [*]. However, this theory also requires a correction, which
is my aim. Poisson arrived at his general equations of the equilibrium of elastic bodies by applying them to the case of a
plate, leading to a partial differential equation similar to the hypothesis of Sophie Germain but with different boundary
conditions, specifically three boundary conditions. | will prove that in general these cannot be simultaneously satisfied;
from which it follows that according to the Poisson theory, a plate generally would have no equilibrium state. This proof
will be given after | have derived the two boundary conditions that replace the three of Poisson's theory, because it

naturally leads to the considerations through which | want to derive those conditions.

Poisson applied his theory to the case of a circular plate that vibrates so that all points equidistant from its center
remain in the same state; he could apply it to this case because one of his three boundary conditions was identically
fulfilled. From the modified theory, | will develop the laws of vibration of a free circular plate; in the special case
mentioned, | will arrive at the same formulas that Poisson found. Through the kindness of Mr. Director Strehlke, who
conducted measurements concerning the nodal lines of circular plates, | am able to compare some numerical results of

the theory with the corresponding results of observation.
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These equations apply to elastic bodies. These equations can be summarized in one, which states that the moment of
the forces causing the deformation is equal to the variation of a certain integral. This equation also presupposes that it
only applies when the displacements are infinitely small, while this exists as soon as the dilations and contractions are
infinitely small; in the case of infinitely thin rods or plates that have suffered finite curvatures, these cannot be applied,

but they can be. It is the following:
(1)0 =8P — 6K [dV (A3 + A3+ A3+ 0(A1 + X2 + A3)?).

Here, § P denotes the moment of the given forces, dV the volume of an element of the body, A1, A2, A3 the principal
dilations of this element; the integration extends over the entire body; K and € are two constants, from which the
elasticity coefficient ¢ depends in such a way that

q=2K1%

is. One obtains the Poisson equations from (1.) by setting 8 = %, and the equations to which Mr. Wertheim was led by
his experiments (*) by setting # = 1. If one denotes the rectangular coordinates of the point of dV in the original state
of the body by x, y, z, the displacements in the directions of the axes that the same has suffered during the
deformation by u, v, w, the forces acting on the same in the directions of the axes by XdV, YdV, ZdV if one
further denotes dO an element of the surface of the body and (X )dO, (Y)dO, (Z)dO the pressure forces acting on

the same in the directions of the axes, then the value of § P, which must be set in equation (1.), is as follows:
)6P = [dV(XOu+ Yov + Zow) + [dO((X)0u + (Y)dv + (Z)ow));
where the first integral extends over the entire volume, the second over the entire surface of the body.

To be convinced that equation (1.) really provides the known equations for the deformations of elastic bodies in the

case where u, v, w are infinitely small, one easily convinces oneself through the following calculation.

Let a, 3, 7y be the cosines of the angles which a line drawn through the point (z, y, z) with the coordinate axes forms:
the dilation



XETRRER TR, XEHEILEEN—, ERPESEEFNANSESTE ML, XITHEMRRE
SR TTIRNIER MNER, miXiER—BE MR N\#FE; M TESERMERITRETRR, XEh
FEARBEN A, EEMIoLMENAE. B2 NGRE:

(1)0=6P — 0K [dV (A} + X3+ 25 +0(A1 + Ao + X3)?).

XE, OP FraeNi%E, dV 2OCTHAGR, Ay, A, A BROTRNERAK, RoEMA LT, K60 2540
BH, WXFNEHFRE R ¢ T

q=2K}3

KA. M (1) FRE 0 = 1 STLUEZSEMARE, BITRE 0 = 1 TLMEEIH/ RSB eHmd STRSHNATE (), W8
A 7, y, z BRI TS dV MEALE:, B u, v, w Fons EEEhasAEanEg, B XdV,
YdV, ZdV FrER—ARHEBRND; #—2iR dO AFEN— TR, (X)dO, (Y)dO, (2)d0 AinkasEe

ANESDD, NSREHTE (1) FIREN 6P fUET:

)6P = [dV(XOu + Y v + ZOw) + [dO((X)0u + (Y)dv + (Z)dw));
HhSE— MRS ER MR BT, E SR F=E LT,

ATHES u, v, w TN, HRE (1) BT ENRESMHAR AR, AMDBREZES U MIERREREEC.

R o B,y EBIR (z,y, 2) FHE5MRBEANBENSSK: Bk



56 ;1

The dilation in the direction of this line for the point (z, y, 2), which is denoted by A, is then determined under the

assumption that u, v, w, and thus also the differential quotients of these quantities with respect to x, y, z, are infinitely
small, by the following equation:

Ou ov ow
_ 2 27" 27
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'8 (61{:}6@)} a(@u{é‘w)iaﬁ(@vié‘u)
Y oy 0z T\ 5z " oz oz Oy)
The principal dilations A1, As, A3 are the values of A for those values of a, 3, 7y for which the variation d A vanishes; i.e.,
they are the roots of the equation
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It follows from this:
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These values of A; + Ag + A3 and A2 + A2 + A2 are to be substituted into equation (1.). We write it as follows:
(3.) 6P - KéQ =0,

*) The equation resulting from this substitution is found in a slightly modified form in a paper by G. Green, "On the laws
of reflexion and refraction of light," Camb. Phil. Trans. VI it is derived there in another way than here, without

considering the principal dilations.



(4) Q= de(Af FAZ A3+ 0(A + A + A3)?)

The variation d€2 will consist of three parts, the first depending on du, the second on dv, and the third on dw; these
three parts we denote by d R, 4.5, 8T'; then it follows that

(5.) 6Q=65R+ 68+ 4T,

and one finds:

Oz dy 0z | Oz
(0, 0w\ 05u  (Bw  Ou dbu
or 0Oy) Oy or 08z) 0z

From the expression for § R one obtains that of 45, and from this that of 7', when u, v, w and simultaneously z, y, z

5R:/dV{2(l W L 296—“’}@

are cyclically permuted. The expression for R is decomposed into three integrals, of which the first has under the

integral sign the factor ‘?—;‘, the second the factor %:‘, the third the factor f?—z” For the first of the three integrals, apply

the theorem expressed by the equation

deF@ = /dVGg—F deFGcos(N,a:),
Oox oz



where F' and G denote two arbitrary functions of x, y, z, dV the element of a bounded space, dO the element of the
surface of the same, and (IV, ) the angle formed by the normal to the interior of the bounded space with the z-axis;
for the second and third integrals, whose sum is d R, apply the theorems that arise from the above through
permutation of & with y or z; in each case let G = du. If we now combine the integrals after dV and those after dO, it

follows that
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The expressions for §S and 7', and then the equation (5.) determine the value of 6(2; set this, as well as the value of
O P from (2.), in the equation (3.), which combines the integrals that extend over the volume of the body, as well as
those that refer to its surface, and set, according to the principles of the calculus of variations, the factors of du, dv, dw

under the two integral signs = 0; thus one obtains the following equations:

For a point inside the body:

K {2(1 4 ﬂ)ﬁ PO T (14 20) 28+ (1+20) 22 ) 4 X =0,

2'!..‘ 2'{,‘ w
K{201+0)58+ 25+ 22+ (1+20)22 + (1+20) 25| +Y =0,

2 2‘1.!." w 2{,‘
K{20+0)%2+ 5%+ 52+ (1+20) % + 1+ 20) &5 + 2 =0.

And for a point on the surface:
K{2(1 F6)o 28@ 2092 4 cos(N,z) + (32 4 g—; cos(N,y) + (22 + 2%) cos(NN,2) + (X) =0,
2(1 6‘)6" F2022 42094 ¢ cos(N,y) + (22 + 22) cos(N, 2) | (% i g—t) cos(N,z)+ (Y) =0,
dw
3

dw
dy
Kq2(1+6)%2 4 202 4 292—’; cos(N, z) + (2 g) cos(N,y) + (Z) = 0.

ow
dz

These equations are the same as those derived by Cauchy in a way where he did not rely on the consideration of

molecular forces; they transform into the Poisson's equations when 6 = % and into the Wertheim's equations when

=1

| will now give a derivation of equation (1.), from which it will follow that it has a more general validity than the

equations (6.). Considerations similar to those that follow here have been made.
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Lagrange has repeatedly used this in his mechanics, for example, in the derivation of the equilibrium condition of an

elastic rod.

Let dV be the volume of an infinitely small part of the elastic body in its natural state. The state in which this part is
through deformation can be known from the natural as follows: that the part without changing the relative position of
its molecules has another position in space and then dilated in three mutually perpendicular directions (uniformly in
each, but differently in the different ones). An infinitely small sphere becomes an ellipsoid whose axes are the directions
in which the dilations took place. These dilations are therefore the principal dilations A1, A2, A3. The elasticity of the
body causes the considered part to strive to contract in the directions in which it is extended; the forces with which it
strives to contract are L1dV, LodV, L3dV'; the first of them seeks A1, the second A9, the third A3 to reduce. The
moment of the first force is therefore —L1dV d )\, that of the second —LodV § A9, that of the third —LsdV § A3, and
the total moment of the three forces is

dV(Ll(SAl b LadAs Lg&/\;;).

Now L1, L3, L3 are functions of A1, A2, A3. We know from them that they simultaneously disappear with A1, A2, As;
further, that Lj is a symmetric function of Ay and As, and the same function of A1, As, Az as L2 of A2, A3, A1 and L3
of A3, A1, A2 must be. If one therefore takes A1, A2, A3 as infinitely small, one obtains

Ly = aX; + bAa + bAg,

Lo = bA1 + ad2 + bAsg,

L3 = bA1 + bAz + a)s

where a and b denote two quantities dependent on the nature of the body. If one introduces instead of these two other
K and 6, which are connected with them by the equations

a=2K(1+6), b=2K6,

one obtains for the moment of the forces generated in dV the expression

AV - SK(A2 + A2 4 A2 4 0(A + A + Ag)?).

*) 1 will designate a compression as negative dilation.
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And for the moment of all forces generated in the body, the expression is:

OK [dV (A} + A3+ A3+ 0(A1 + A2 + A3)?).

The sum of this moment and the moment of the external forces must vanish for the equilibrium state; as expressed by

equation (1).

Section 2

Now we want to consider a plate. We assume that its base surfaces in their natural state are formed by two parallel,
infinitely close planes, and its edge by an arbitrary cylindrical surface that cuts these perpendicularly. The plate has
undergone a shape change due to forces acting on its interior and pressure forces exerted on its edge, while its base
surfaces remain free. These forces are ultimately only so large that the dilations they produce can be considered
infinitesimally small. However, it is not specified that the curvatures the plate has experienced are infinitesimally small;

these we will provisionally consider finite.

To apply equation (1) to the case of such a plate, we make two assumptions which we regard as results of experiments

and which fully correspond to those made by Jacob Bernoulli regarding an elastic rod; namely the following:

Every straight line of the plate which was originally perpendicular to the base surfaces remains straight and

perpendicular to the surfaces which were originally parallel to the base surfaces during the shape change;

All elements of the middle surface (i.e, the plane which in the natural state of the plate is the plane parallel to the

base surfaces and located in the middle between them) undergo no dilation during the shape change.

With the help of these two assumptions, the values of the principal dilations Aq, As, A3 for the current case can be
easily expressed through the principal radii of curvature of the middle surface. For this purpose, let us consider a further
examination of an elastic body of arbitrary form. Imagine in this body in its original state an infinitely small sphere with
a diameter a and a diameter plane A perpendicular to a; during the shape change, the sphere transforms into an

ellipsoid; the molecules lying on @ and on A then lie on
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ATERRE (1) NAETXMRAVER, BAMMEAMRIR, XEBRRENALRER, HES2/G Jacob Bernoulli 5T
SEEFRORIR; BT
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with a diameter a’ and on a diametral plane A’ of the ellipsoid, which are conjugate to each other. Generally, therefore,
a’ will not be perpendicular to A'. If a’ is perpendicular to A’, then a’ will be equal to one of the principal axes of the
ellipsoid, and the maximum and minimum of the two other perpendicular diameters will be equal to the two other
principal axes; i.e., the dilation of a’ will be one of the principal dilations, and the two other principal dilations will be

the maximum and minimum of the two other perpendicular dilations.

If we apply this theorem to the case of the plate, it follows from assumption (1): that for any point inside the plate, the
dilation in the direction of the normal drawn through it to the middle surface is one of the principal dilations. Let us call
2 the original distance of the considered point from the middle surface, z’ its distance after the shape change;
simultaneously let 2 also denote the normal of the middle surface after the shape change with respect to its position.
Set

Z—z2=gq,

SO % will be the value of a principal dilation. Since this should be infinitely small, and since g simultaneously vanishes

with z, ¢ must be infinitely small against z.

Considering assumption (2.), it is seen that the dilation in any direction perpendicular to 2’ is ZE, when g is the radius
of curvature of the curve in which the plane through 2z’ and the relevant direction cuts the middle surface at the

footpoint of z'. If we call the radii of curvature of the principal sections of the middle surface for the footpoint of 2/, g,

i and é are the values of the two other principal dilations. Since 2’ — z is infinitely small against z, we

can write for these also ﬁ and aiz

and p», then

The values of the principal dilations A1, A2, A3, which have now been found, substitute into equation (1.). Expressing
the element of the volume of the plate by df - dz, where df is the element of the middle surface, we obtain the

equation

0=6P — KO [[ dfdz [(%)2 | (—)2 | (5)2 Ho (5 + 2 5)2]
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If the thickness of the plate is denoted by 2¢, then the integration with respect to z should be taken from 2 = —¢ to

z =E&.

Now we want to show that one of the principal dilations % can be expressed through the two others Qil and é
without needing to know the forces which caused the shape change of the plate. To this end, we need to examine more
closely the value of § P, which is given by equation (2.). The right-handed coordinate system, on which this equation is
based, should be chosen such that the xy plane is the middle surface in the natural state of the plate; then z retains the
meaning given to it here. Let us denote the angles which the normal of the middle surface 2’ forms with the coordinate
axes by (2/,z), (2, y), (#, 2), the original coordinates of the footpoint of 2’ by 2, ¥, 0, and the displacements
which this point has suffered in the directions of the axes by ug, vy, wy; according to assumption (1.), we have:

T+ u=xzg+ uy+ 2 cos(2, z),

y+v=uyg+ v+ 2 cos(,y),

z+w = wy + 2 cos(2', z),

or, since 2’ — 2 is infinitely small against 2:

T+ u=x+ uy+ zcos(z,z),

y+v=yo+ v+ zcos(z',y),

z+w=wg+ zcos(2, 2).

From this, it follows:
Su = dug + 20 cos(2', z),
§v = dvg + 26 cos(2, y),

Sw = dwy + 20 cos(2', z).

These values of du, dv, dw are to be substituted into equation (2.). The second parts of these are infinitely small
compared to the first parts because they contain the factor z; we have retained them for the case of the above

considerations not to exclude the integrals

[FXzdz, [TYzdz, [F Zzdz, [F(X)z dz,fj:(Y)zdz,fj;(Z)z dz

of the same order as the integrals

[5Xde, ["Ydz, [T Zdz, [C(X)dz, [C(Y)dz, [T7(2) de.



N 2e BAWNEE, WXTF z BRSO MNM 2z = —¢ Bl 2z = € ##H47,

DR MEEEIEeE, Hep— PRk % LB BANE - 1 - RRIA, MAGAESHIRREMNI. Alt,
NEESEFEEHTHAE 2.) SHY OP [E. ZHEMETNAFAUIRANEEN: ERNBRKETR, vy FEE
chialZkm; W z FBREANMEFRENY., RFEER 2’ SeRERNAESSER (2, 2), (2,y), (¢,2), BI=
2! WIRSEAAHRA To, Yo, 0, BNZATEHAE ERAEESBIA o, vo, wo; RIBEIR (1), BAi1E:

x+u=uxzo+ up+ 2 cos(2', x),

y+v=uyo+ v+ 2’ cos(2',y),

z+w=wy + 2’ cos(?, 2),

2, BT 2 — 2t 2 BEXRIE:

x+u=xz9+ uy+ zcos(2',z),

Y+ v =1yo+vo+ zcos(z,y),

z+w =wy + zcos(2', z).

IS :
du = dug + 26 cos(2’, z),
dv = dvg + 26 cos(2',y),
dw = dwy + 26 cos(2’, 2).

X du, 6v, dw BHEMNANGTE (2) . XEENE_FHENTEBSEXRN, EACNEaETF 2; i)
RBEIENT AHBRUA RS

i Xzdz, [[Yzdz, [ Zzdz, f_+f (X)zdz, f_Jr:(Y)z dz, [7(Z)zdz

SRS E:

[T X dz [TV dx [T 2 de, [T (X) dx, [TE(Y) d2, [75(2) d.

—&
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If the values of du, dv, dw from (8.) are substituted into (2.), it is seen that d P is independent of d¢; it follows that the

term dependent on d¢ in the second part of equation (7.) must vanish for itself. This leads to:

dq (z z)
1+40)—+6(—+—) =0
( )32 01 02

or

dq 0 (ziz)
0z 1+60\o 0/
dq

Substituting this value of 77 into equation (7.), we get:

2
0=0P K&//dfdzzz %1%+L(i+i) ;
o1 0 1+6\o1 o

or, when the integration with respect to z is carried out:

2 . 1 1 0 1 1)\?
9) 0=4P —s-‘Kaf/d —}—1—(—1—) .
(9) 3 ! of o5 1+60\o1 o
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The general equilibrium condition for a plate derived above will now be applied to the case treated by Poisson: namely,
the case where the plate has only moved infinitesimally away from its original equilibrium position. We begin with the

further development of the value of d P.
Let wg be an infinitely small quantity of first order; then, since the middle surface has not suffered any dilations, 1y and
v must be infinitely small quantities of second order; hence dug and dvy can be considered as infinitely small
compared to dwy. The equations (8.) can thus be written as:

du = 28 cos(2, z),

dv = zé cos(2', y),

dw = dwy + 26 cos(2', 2).

Furthermore, in the present case, if only infinitely small quantities of first order are considered:

81{?[] 311}[]
cos(z,z) = ———, cos(z,y) = ———, cos(Z,z)=1;
(#03) = Gt cos(#9) = 50 cos(,2)
and therefore:
) )
du = z"9 w“, dv = za wU, dw = dwy.
oz Yo

These values are substituted into equation (2.). If we again express:



1SS S, Ov, Sw BHEM (8) FEN (2), BB 6P 55 6q Fozt; /B, TE572 (7) NS RO KET oq MR
REHTE, XS

dq (z z)
1+0)—+0l—+— ] =0
( )82 01 02

BILERNDRE (7) &, #1532

1 1 9 1 1)\’
0=6P K&//ddzzz _{_4_(_}_) ,
f 02 02 1+60\o1 o

3, L% 2z BATERSHT:

2. 1 1 0 1 1\°
9.) 0=4P —s"Kéi//d —}—1—(—1—) .
(9.) 3 f of 05 14+60\o o



RS HERA— AR ESIERE N BT RANENER : BRI E RS SN EZR 7 A5/ ISR, BN 0P
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& wy E—MTSNE; B4, HTFHEEREmSBEIESEEEAK, uy fl vy BWREZMTSNE,; Bt dug 1 dvy TTLL
NIRRT dwy EFXLSS/INN, HIE (8) oJUBA:

du = 26 cos(Z, z),
dv = zd cos(2',y),
dw = dwy + 26 cos(2, 2).

s, EHEER T, WRABEMTHNE:

' ng ' 6’11?[] f
cos(z,z) = ———, cos(z.,y)=———, cos(z',z)=1;
(', z) D2, (2", y) o (', 2)
At :
ou = 265’11?[] , 0v= zaéw“, dw = dwy.
0z 0o

XEAEFARNGE ) . MRFATBRFRA:
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Express the volume element of the plate by d fdz and the surface element of its edge by dsdz, where ds is the contour

element of its middle surface, and for convenience write w, , y instead of wy, T, Yo. Thus we obtain:

5P:ffdde{Z5w Z(X%L: | Ya';‘s—;)}
} /[dsdz{(z)éw z((X)if—: i (Y)%”)}.

The forces X, Y, Z and the pressure forces (X)), (Y), (Z) can be considered here as independent of w because w is

infinitely small. We want to transform the expression for d P. It can initially be written in the following way:

6P:[[fd:cdydz{z | z(%—f | %)}5“’
f f / zdzdydz 6};2‘” f / f zdmdydzagjw
} //dsdz{(Z)aw z((X)ag—: | (Y)?—;”)}.




The second and third of these four integrals can be transformed by applying the formulas:

[ dzdy%E = — § dscos oF,
If dmdy% = — §dssinpF.

Here F' denotes an arbitrary function of z and y; the double integration is over a bounded surface, the single one over
the contour of the same; ¢ denotes the angle that the normal directed towards the interior of the bounded surface
makes with the positive x-axis when it is rotated in the direction in which the normal is described until it becomes
parallel to the positive x-axis (until it must be rotated so that after a rotation of 90° it takes the position of the positive

y-axis). By using these formulas, one obtains for § P the following value:

észffdxdydz{Z | z(a—X f 3—Y)}5w
Oz Oy

i //dsdz {(Z)+2((X)cosp+ (Y)sinyp)} dw

f/zdsdz{(X)i;s—: } (Y)i;s—;ﬂ}

BRI RE RN dfdz, WsFETEFR N dsdz, HY ds EFEFENEENE, FAT7THERERL, Bw, «
, y & wy, x, yo. HILFAIBE:

5P:ffdfdz{Z§w z (Xﬁé_w | Y%—w)}
Oz dy
} //dsdz{(Z)(Sw z ((X)ag—: | (Y)ag—;ﬂ)}
NX,Y, Z7aEH (X), (YV), (Z2) BXEALWMAS w ok, TR w EX55/, BA18EZs R 6 P FEAR.
TR LAS A AL
EP:/ffd:cdydz{Z i z(a—X i 3—Y)}5w
Ox dy
X ow Y dw
f/f zdzdydz 92 //f zdxdydz 3y
} ffdsdz{(Z)ﬁw z ((X)if—: | (Y)?—;)}




XPUM RS FRIE _ME =1 LUBE WA AT T3S

If dmdy% = — §dscospF,
II dmdy%—i = — §dssinpF.

X8 F Fx z /il y WESRE, WERSENEREEmH TN, RERS ENE—FREIVREHTHN. » TrMEIRE
ENEHEMANELRSIE z- M BNAE, HEiEkEISIE o-MFTHNAEE (ERIW ANt 90° BB AiEE
y-HRNE) , BUERAXEAT, T 0P BEILA™ME:

o0X 0Y
5P:///d:rdydz{z | z(% i ﬁ—y)}éw

| f/dsdz[(Z) Fz((X)cosp + (Y)singp)} dw

f/zdsdz{(X)if—f } (Y)ég—;g}
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In the last three parts of § P, replace 5 d'j"‘ and d'jw with the differential quotients of dw along the inward normal of the

contour, %‘5—{‘, and the differential quohents of 5w along the arc of the contour, 6['3_5—;‘ Assume the arc s increases in such

a way that the angle formed by the tangent in the direction of the increasing arc with the positive x-axis, and described

in the manner defined for ¢, until it is parallel to the tangent, is ¢ — 90°. The following equations then result:

0dw  Odw cos o | Jdw cin
8z 0N °P T s S
ddw  ddw sin ddw cos
8y  ON " g OB¥

Thus, we have:

ff zmz{ 3;: | (Y)?_;”}
— f/ zdsdz {(X) cos ¢ + (Y)Sin@}&s_w
}f/ZdeZ{(X)Sin(p (Y)cosw}‘%_w

The second integral on the right side of this equation, we integrate partially with respect to s; the term emerging from
the integral sign disappears because the integration refers to a closed curve; then substitute the left side of the

equation into the expression for d P. This gives:

0P = f/fdxdydz{z i z(aX i 3—Y)}6fw
Or dy

} /fdsdz{(Z) bz 9((X) Sini)s (¥) cos ) bz (X cosyp Ysinc,o)}éw

/f dsdzz {(X)cosp + (Y) Sincp}if—;

Now form the second part of the right side of equation (9.). We consider a plane through a point of the middle surface,
which has coordinates z, y, w, parallel to the z-axis and forming an angle € with the zz-plane; p be the radius of

curvature of the section of this plane.



1 P WBE=NBAF, % G2 fn G2 Slenin B BriEEAam dw M 5y, URAERERIKA RN

dw RIR TS ‘g"g—;" BRI s REBXERIAHTUEN: BIEEEENARNYIZSIE - MM, FHERENY ¢ W5
iete, BRESYLRFTH, ®AN ¢ — 90°, NEBILIRAGE:

ddw  ddw cos o | ddw sin
dr  ON °P T g S
Odw  ddw sin Odw cos
ay  oN TP g ¥

Hitt, #FAi1A:

f/zdsdz{(X)?—;u | (Y)ag—;ﬂ}
= [/zdsdz{(X) cos ¢ (Y)sinr,o}C:;:s—;rU
}f/zdsdz{(X)sin@ (Y)coscp}ér;s—f.

IHENABRIE MRS, F% s #HTE5 RS, MRS SHHIININES, RARSENE— S, AR
FANAOORN 0P A, XEEH:

5P = [[[ dwdydz1z + = (2% + ) s
[l vtz {z (5 5)
} /fdsdz{(Z) LX) sing = (Y)eose) oy s Ysincp)}ﬁw

s
// dsdzz {(X)cosp + (V) sinp} ?—;

WG (9) ALNE SRS, BiIEREPEREN— R (BARA ¢, y, w) BVE, EFEFTT -4t
5 zz-FEERABE 0, p 22 FESEIEERYRE,
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And the middle surface for the point (z, y, w), so itis

52 2 92
= —wc0528 -2 cos @ sin 6 —wsinzﬂ.

1
q 0z? 0zdy ay?

The values of ;—l and q—lg are the maximum and minimum of %; they are therefore the roots of the equation

2 2 2 2
Gw V(2w ) (S
Oz? oy? Ozdy

From this follows:

3 () () ()
¢ ¢\ ox? Ozxdy oy? ) -

These values are to be substituted into equation (9.). Set

2w\’ %w \° 2w\ 2
fodmdy((amﬁ) *2(6may) *(ayﬁ’) |
R— ded ?w  Pw)\’

_// TAY \ 52 | oy? )’

so equation (9.) becomes

0
2 2 _— =
§P — 2e K(aQ 13 9512) 0.

Now the formation of (@) and d R is necessary. It is found that

0*w 8*0w w 0%5w 0w *6w
50 =2 [[ ded 2 .
@ f_/ v y{6$2 022 ' “Bzoyocoy T 0y 0y }




However, it is:

w §%6w
f/ d:rdy dz? Oz?

0 0°w ddw 0 Bw
:f/dxdyaﬁa f/dmdy——éw } /fd:rdya T
/fd w 8%dw
v y@m@y B2y

8 0*w Odéw o 9*w ddw *w
_ ] qeay 2 W 90w dody L. 0 W 90w dzdy—2"" sw.
f/ * 5z 90y oy [/ Y S 0xdy Oz f/ T 52,20

and also
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These four equations are to be added. On the left side of the resulting equation, one then obtains %5@; on the right
side of the same, one transforms those integrals which under the integral signs contain the element of the surface with
a differential quotient taken with respect to & or ¥, using the formula (10.) in integrals that refer to the contour of the
middle surface. In part of these integrals, the differential quotients 73 ‘%—“ and 8"—”‘ appear; these are expressed with the

help of the equations (11.) through 55~ 80"” and 65”‘ and the terms containing =5 65“ are integrated partially with respect to

S. The terms that appear before the |nteg ral signs disappear because the |ntegrat|on refers to a closed curve, and it

results that:
0w 0w
6Q_2f/dmdy{8$4 i23m23y2 } 3y4}6w
927 ' dwoy?) ¥ " \aa2ay " 0F )Y
9 ( G w (cos? sin” @) 4 (32_10 32_w> €os @ sin )
ds \ 0xdy ¢ s oy?>  0x? L

2%&’3 @coszgo }2 Fw cos @ sin ¢ @sirfgo 86_’&; .
dx? dzdy oy ON




Furthermore,

Pw  *w)\ (06w 6w
5R:2/fdmdy(am2 | 6y2) ( 5 T oy )

However, if F' and GG denote two arbitrary functions of 2 and y:
9°G  0°G
JJ e (5 52)
9*F  9*F G
f/dmdyG (T | —) jgds—G fdsFa—N,

XINSREEEE. EENNAENADN, REE8 16Q; ER—ENGYH, KISy © 5%y K BNE
HETTRAARS SR ATBEAIICERRS, AN (10), EXERSHI—FH, HIEHT B 1 52, i@ty

Ay -

2 (1) B 2% %Y Rk, FEAE Y NIESIEET s 179, HIERAHSHINITES, BARSENE—

WAH%,#EE_
641{} 6411,1
=2 dxd
0Q = /] x y{6$4 23m23y2 | 3y4}6w
3 3 3 3
iQfds O w | 0w | Ow i w |
O3 3$6y2 Cos 3:1:269 Byg sin
9 (Pw 2 . 2 Pw  Pw ]
ds amgy(cos @ — sin” @) 4 5y 022 cos p sin ¢
93w 93w . Pu 6w
Q%ds{a 5 cos® ¢ 23 aycosgosmga } ﬁsm }S—N}
14k,

0w O*w O*dw  O*Sw
6R_2f/dmdy(6$2 | 6y2) ( 527+ 5y )

SR, W F G Fom « My BUEESREL:
G 9°G
[ dwivr (W | a)
32F oG
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One also sets

2r 2'1
F=5%5+%% G=ouw

and considers that

adF __ aF
aN — 8z

which follows from the equations (11.); thus, one obtains
] w i
OR =2 [[ dedy (52 + 25587 + 5% ) bw
3, B
+2 §ds ( o3 3‘28":2)(:03(,0 | (6‘3;5?; | ‘3—) sm(p)é

Fw Fw | ddw
2§ ds (57 aTz) aN -

cos %smg@

Using the equations (12, 16, and 18.), one now forms the equation (14.); the left side of this can be represented as the
sum of three integrals, of which the first is extended over the middle surface itself, the other two over the contour of
the same, and of which the first two have under the integral signs the factor 510 the last the factor %”{f According to
the principles of the calculus of variations, the quantities with which dw and 2 (ﬂr must multiply must disappear. One

thus obtains the partial differential equation
f_de } i_f_+:dez } ifﬂdez
s€ KTy (g:ji | 25‘.::’23:;2 | (?9;_4)
and the two boundary conditions
[ 5(Z)dz + % (sincpf_tE(X)zd.z coso [ 5( zdz)
{ coscpf“dez } sinc,of“dez
_ ‘K{”m ((g}; | afayz)cosp | (3‘1;(;’? { ‘g;‘;)sinqo)

) 3
2 (aﬁu(cos @ — sin® ) (% ‘3?) coscpsmcp)},




Eitthig

3w 8w
F =571 Bl G = 0w
FHEI=z
gi e %cosg@ | %sincp
XEBHE (1) B, Eit, 52

4 A L

SR =2 [[ dzdy (g—“ P2l ‘37) Sw

2 ¢ ds (% i %5;9) cos ¢ (% } %)Simp)éw

Fw | Fw) ddw

FIFARE (12, 16, F118), BUEFEASTE (14); EEMEIUFRA=MASIN, EhS— M MAST ERhEEss,
BHNE MRS T BEZENCE, HEFFEMEISFETHNRTE jv, 85— EFE 28, RESSENEN, 5
Sw 1 L2 igsemBwisst, EIEaiREsS 2

+¢ +e +e
I, Zdz+ %f_f X2dz 6%-[—: Yz2dz

_ 4 3771420 [ 8'w 8w *w
=36 KI5 (6;-:‘1 i 26‘:::28;:,.-2 ay°

PAR PR NAFREAF

I (2)dz+ & (singof:(X)zdz cosgof__:(Y)zdz)

i cosc,ofj: Xz2dz + Singofj: Y zdz

= %E:;K{%? ((% | %6‘;2) cos ¢ (% | %‘i}') singo)

a 6? w 2 2 a.'i_w 6? w ]
ds (8$By(cos @ —sin” p) 4 (ayz 5.7 | cospsing ) ¢,
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Equation (21.)
cosgof X)zdz Smcpf Y)zdz

= ‘E1K{1+a (gT”‘; } %T%) } gz“' cos? ¢ 23"” cos @ sin ¢ '3;; sin <p}

Equation (19.) agrees with the partial differential equation derived by Poisson, except that Poisson set @ = L, while here

3|

0 is left undetermined. The three boundary conditions of Poisson can be represented by equations (20., 21.) and the
equation

sm(pf X)zdz — cosp [(Y)2dz

3 21.!." z'w .
= K(amaq(cos @ — sin® @) 4 (?97 g?) 00530811130).

| will now show that w is determined up to an additive linear function of & and ¥, which remains arbitrary, by the
equations (19., 20, 21.). From this it follows that the Poisson's equations are only satisfied in special cases where the

given forces are such that equation (22.) is automatically fulfilled as soon as equations (19., 20., 21.) are satisfied.

Let w; and w2 be two functions that, instead of w, satisfy the equations (19., 20, 21.); then w1 — wa = w satisfies the
equations that arise from the above-mentioned ones when the left-hand sides are set to 0. | will prove that these

equations are only satisfied by a linear function of & and .

Consider the value of

5Q + 150R

formed once with the help of equations (15. and 17.), then with the help of equations (16. and 18.), and the two
expressions obtained thereby are set equal to each other. In the identical equation thus obtained, let w = iw, where
under 7 an infinitely small constant is understood. If one then removes the factor 2¢ found therein, the equation

becomes:



HiE (21)
cosgof_tf(X)zdz } Sin(pf_tf(Y)de

_ 4.3 0 (&w | &w Pw .2 Fw : Fw 2
= 3€ K{m (E f W) b 52 cos” o 231_6 COoS  s1n @ Gy ST .

72 (19.) 5 Poisson SHARGES T2, B Poisson igiE € = %, X § {fEkfAE, Poisson N="Nb5FSE
HoaTLABId o7 (20, 21) FIGE
sing [ °(X)z2dz cosgof_tf(Y)zdz

Fw Fw

= 31K (;r_—%(cosgap sin? ) (3—q2 6332) cosgosingo).

A w HHE (19, 20, 21) HER = M y B—IMEEMRE, ZREURSER, HILEL, Poisson KHTE
AEETEITHRENE (22.) BIFANER N4 AL,

% wy M wy EFMNRE, B8 w BEHRE (19, 20, 21); M w; — wy = w FHEMN BRAHEHEIINHTE, Yo
Iwig A 0 BY, FRFIEBERE AN = 1 v MR ETHE.

EEE
6Q + {2;0R
—RFIR/TE (15. 70 17.) B, SAGAHE (16. 71 18.) #EIZEL, FEAMSIINAEINFAIES., EHESINE

—hHES, % ow =iw, Hii IFIERATS/INEN. MREHPRINEF 20, HEEA:

70 ;1

/f ded @ 2 F 2 o )’ | @ 2 | 4 d*w 1 Bw\
Y Az 0xdy ay? 110\ 925 ' 9y
1+ 260 w 8w 8w
_f/dmdy 110 (3:r4 i 2(9:13283;2 | 3y4)w
g d 1420 (8w : Ow } Fw i Buw\
% 171 Fe \ 9z® ' 9zdy? cos @ 9220y | 9y sinp » w
f{i 8 831‘_{)( 2 .2 ) { @ @ .
s 116 \ 920y COs™  — sI” @ Ay? D2 COS @ 81N @
3 (9310 ( 2 . 9 ) { @ @ )

fds o Fw | Fw cos®p + 2 0w cos @ sin ¢ @Sinz B_w
116 \dz2 8y P T hay (PN T G S Y GN




If w satisfies the equations into which equations (19., 20., 21.) pass when their left parts are set to 0, then the right side
of this equation vanishes; hence the left side also vanishes. However, since @ is positive, it consists of a sum of purely
positive quantities: all these quantities must therefore vanish for themselves, and thus for all points of the middle

surface of the plate the equations

z3 oxdy oy?
must be satisfied. These equations can only be satisfied by a linear function of & and y.

I will now apply the equations (19., 20., 21.) from the previous paragraph to derive the laws of vibrations of a free,

circular disk. From these, we obtain for the vibrations of an arbitrarily shaped disk the partial differential equation:
_ _d*w 2 l+20 €2 *w
(1) 0=o +315¢K ((%4 F 250 W) ;

in which g denotes the density of the disk, along with the boundary conditions:

0 — ii-]::t;ﬂ( gj:g + a.r!w 5)6031’,0+(3i?5y | 83!0)3"1@)

8’ 3w .
(2.) (axa (cos* ¢ — sin rp)-[—( 2 -E-T)cosqmsmgu).}
o 5
0 = H‘ﬂ( w)+a act}sthrBa 5 cﬂsgasm(p—{— ,sm (p)

Man erhilt diese Gleichungen, indem man in jenen (X):(Y}:[Z}mﬂ,



Bw\ > Bw\> [(Bw\® 0 [(w Bw)’
Oux? dzdy oy? 1+6\ 0z 8y?
1+ 20 [(8*w A*w d*w
— drd 2
// ray 1+86 (6:1:4 | 0z%0y? | By“)w
} j{ds{l I 20 (wa } w )cos } ( Aw i 33w)sm }
146 \ 8z Ozdy? v oz*0y  Oy* ’
fds L 0w (cos® sin® ) 4 @ @ cos p sin
1+ 6 \dzdy W N oy*  Ox* pRme
E ( 0w (cos® sin® ) 4 (@ %) cos @ sin )}w
ds \ Oxdy N 7 dy*  Oa* peme

%ds{ 0 (831& i 8310)0082 i263w COS  sin }@SID }B_w
116\ 8z 8y P T ezay (PP T 2 S P GN

W wHRGE (19, 20, 21) A ER 0 WHGE, W GRNAEEL: Ritkiisteigss, %Am, BT 0 2K,
CHEEENMAR: FrEXEEMRBEmES, FERESFiRTERENRES, A

3 3 3
Ow _y 9w _, 2w_,
ox3 dzdy

W

‘9—5}

HRE, XEHERGEY © My NEMRECERE.
§.4.

HRIER N AR —RPIIGRE (19, 20, 21) EESEHREFBRIRNER. NXEHES, FNOERUFRARERIR
BHRGES 72

1) 0= 33;21 | 2511+20062K( f)u),

T + 257 + G
Hrh o T8RN EE, LSOO

o 114:;9 ( ng o )“’“S‘?"Jf(ai:au} T a=w) singy)
(2.) (BJ: 5‘_}' (cos’ ¢ — sin* )+ (8 2 -g—;?) cos ¢ 8in fp).,

o
0 = H"ﬁ( )+a ; COS tp+23 5 cosqusmqu—{— Y sin (p)
Man erhilt diese Glemhungen., indem man in jenen (X):(Y}:[Z)ﬁﬂ,




BX = o2t Y =Tt 7= —me,, HERIIE (52) PHMOAMER, B 2L A 00 RajgERA
55 2V fath. BTEE (1L.712), TRENZ—S, B4t = 08, w f 2 FFEHR o 1l y WHMAERL; X
B w RRSRET.

EINBEIHFADFE (1) B—NME8, ZBAERE (2). AETLUREMT, FHEHERE t = 0 %4

AT ERER, =

21420 2K 2
31486 p, @

AR
(3.) w = usin(4)\?at);

Hifu 2z f y R, A B2— 1B, BMERSHSHEENR. &d 3), R« FELUTHRE, WHEE (1) ¥
e

(4) 16Mu—=2% 4o

'y
ax’ay’ + Byt
Rl LGB L TR AR E

2., dn i

5) AN = 55 + 3;
4/\2 qu +

2 ay

5%

(6.) u=S+D, v=8§-D,
mxF S ?l:l D _I’ L){'Fﬁlﬁﬁﬁ:
AN*S = a:u + ﬁg‘“

—4N’D = 28 + &

EEE!E%I)\*&%*TT P BREALE; WREHNAFREER:
A s
4‘)"28 - 6?‘2 + :-'6‘: rll ayt?
14D 1 8D
—4x*p =42 19D 4 12D

2 Bl



Set X = cp mz, Y = —:,o%, 4= —(p%, and consider that according to the two assumptions made in (§ 2.), ?ﬁzl’b

and % cannot be infinitely large compared to %_;f'. In addition to conditions (1. and 2.), it is necessary to add that for

dﬂu

t =0 wan should transition into two given functions of & and y; then w will be completely determined.

We first seek a particular solution of the differential equation (1) that satisfies equations (2). This can then be

generalized so that it also meets the conditions valid for ¢ = 0.

For brevity, set
21420 2K _ 2

5168 5, — @
and

(3.) w = usin(4)\2at);

where u is a function of = and ¥, A is a constant, over which we reserve the right to choose. Through (3.), equation (1.)
will be satisfied if u fulfills the following equation:

(4)1m%=gf+2£%,+w

This can be replaced by the two equations

4)‘2 — BE-I_J. ag-f.a )
@% U= e oo

6_"
2y <4
ANy = g;_-i-a?'

ay

If we set

(6.) u=S+D, v=8-D,

then for S and D the differential equations follow:
2 &5

4N°S = 83. + By“

2 8D
—4\2D =2 4 28

Now introduce polar coordinates 7, v in place of the rectangular coordinates; then the last equations become:

2 18‘: 89‘
4X°S = Hr‘+rﬁr r*B 2y

2 14D 18
_4)“9_ H?z +r ar +_381,3'

r
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72 4. Kirchhoff, XT3N TEMEEN. MRS
(7.) S=Acosny- X,
| D = Beos ny-Y,
Hp AM BREESH, nB2— 1B MXAMY BrO@miTE, ElEESR
(8. {dr5+%%(i+4A2)X_0:

d-Y 1dY 2
i (5 -0y =0

oAz = Ar, NIXLEHFETH

d® X 1dX n®
0 E+55—(%+4)X=0s
(9-) Y | 1dY (-nz )YzD.

dx? z dz

HisEn:
X0 = 2 (14 o - + ete
(10) T 1.2.3--n 1.n+1 1.-2.n+1.n4+2 1.2.3-n+1-n+2-n+3 ]
My = =2 (1 =2 = + etc
T 1.23--n 1-n+1 1-2-n+1-n+2 1-2-3n+1-n+2-n+3 ]

AR H At AR

o {3

=YW [ e
Hrpzg REERREME. BElt, A% (9) B9—REA:
{X —aX® + o' X0,

Y = ﬁy(n} + ﬁ:y(n)r.

MBEE (1) BIUBY, Yz =08, X® MY" THESA; BRESEEN, FRFFM, WY r =0, B
=08, uflviR X MY BAEFER, Bt o 1§/ BTAEK. EFRRE—BENERT, ATUEER o
Bi&R 1, BRBRIMESRZ (7) DELRXIINTEH AM B,



72 4. Kirchhoff, on the equilibrium and motion of an elastic disk. This is satisfied if we set
(7.) {5’ = Acosny - X,
D = Bcosni-Y,
where A and B are arbitrary constants, n is an integer, and X and Y are two functions of r that satisfy the equations

L4+ 1 (% +a0) X =0,

dr? rodr

(8') d’y 1dY :
3 n 2 _
d—r2+;d-r_(r_'i_4A)Y_G'

If we introduce & = Ar, then these equations become
@+l@—(g—;+4)){:n,

dx? r dz
(9.) dy o 1dy (o0 )y —
dx? r dr x? o

The particular integrals are as follows:
1

(n) _ _ a" z* x’ 28 ,
XW=merm Mt ot ename + mseiiaieas et

yn —

(10.)

2 1
123--n (1 ~ Tnfa T Tonsini?  T23niinianid T Bt{") ’

and other particular integrals:

(n)' _ yi(n) % dx
(11 ) X=X }'rl'u e X X n)?
: n) p T dz .
y) — y(n) j‘m“ i
where @y denotes any finite quantity. The general integrals of equations (9.) are therefore

X =aX® +o/X®
Y =8Y(™ 4+ gy,

From equations (11.), it is evident that X ™) and Y (' become infinite for z = 0; assuming the disk is complete and
not ring-shaped, then for r = 0, i.e, £ = 0, u and v, and thus also X and Y, must remain finite, and therefore a’ and
3" must vanish. The constants a and 3 can be set to 1 without loss of generality, since we have already introduced the

constants A and B in equations (7.).
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Hit, BIIBUTARREARZ (7.):
(12 S = Acosni - X["—’],
D = Bcosny - Y™,
Heh X R YW AR (10) BENRHK. BEET, YW 2NER3INES I, HEH,

HERITESHRESR A. BMANE, FEAE (2) SEER. EXEAEDR, MKs EZ5HE (1) (83) FrEA
EERE AR LA AEM. MBBELHIEXAILEL, MRt ¢ FZARLEEN, HiERF s ER, #%

s =,
Hep | RI-EBFE,
p =1 + 180°.

FEE—=, Bds|I AR r Ml ¢ MARERYH, AR 2) BRASLITER:
#a (8w dw #Fw i #Fw dw
& (W +15 + r‘lﬂu) + 25 (6?'3?;'- - %E) =0,

8 (&w | 10w 1 8w Pw
n3&¢+?m+ﬁﬁﬂ+ﬁﬁ—

(13.)

XEFRRUMTE r = | FIFRE o BENFRE { (IEEMIL. BE (3), SR v Bt w i, WaHmEFEEM (13) FH

BETE. EEE

T+ G R R = 4,
XEHE (5.) BIFE ISP
4)\2 126 8v 1 &% 1 Pu _ 0:

116 or T 12 oroy? 78 o2

2. 6 Su _
ANTEr+ 5 =

¥ u o BERALL, XEER (6.7112) /Bd, B { 88 r, HERT uTHSH.

Therefore, we write instead of equations (7.):
(12.) S = Acosny - X,
D = Bcosny - Y™,
where X and Y (™) are the functions determined by equations (10.). | note that ¥ (™) is the function for which Bessel

introduced the notation I5...

We will now seek to determine the constants A, B, and A such that equations (2.) are satisfied. In these equations, the
arc length s is considered increasing in the direction specified in equations (11.) (§ 3.). From the definition given there, it
follows that if ¥ increases in that direction and the starting point of s is chosen so that

s = Iy,

where [ denotes the radius of the disk,

© =¥+ 180°.



Using this, the equations (2.) take the following form when polar coordinates r and 1 are introduced instead of

rectangular coordinates:
1420 8 (8w |, 18w + 1 8w + 18 ( #Fw  1dw) _ 0
1+8 dr \ dr? r ar r? o? r? gy \ drde rdg ]

1] BE'LL' 1 dw 1 ngl 621.[.‘ -
m(aﬁ-z +;m+r—z@)+w_n.

(13.)

These equations must be satisfied for » = [, for all values of 1, and for all values of £. According to (3.), the equations

derived from (13.) when w is written instead of w must also hold. These equations give, considering that

B+ 140+ A — 4,

which is what the first equation of (5.) states:
» 3, -
4A21+29@+%2 & 16‘1;:0;

1+8 ar ' rZ droy? rd Gy?
2 6 8u
AN 1Hv+ 52 =0

Substituting here the values of u and v obtained from (6. and 12)), replacing r with f and expressing the second

derivatives of u.
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wEREs X YW RE-MeSH, #RsE LY = 4, BENTER:

dx ir
e S R S

0= A{nz}{(-}l) _ E(ﬁ; - 4,},3:2)4;(%:} B {ngY[n} o ﬂ:(ng 4 47-’-")(“/{“) } |

XEFBREEEAEr =[xz = AN FEE. ik, ENBTHRHSTAE, BA A B FAUETFE. ATz = A
Yt =

dr dr

dy (n) dXx(n)
—_ym=

dr dr )

(n (n
0 =8yn2z2 XMy (W) — 8ypn24? (X(n) ay' ™ Ly ® dX l)

— (n2 (n2 — 1)z + 1672:.:5) (X(n)

LdX® 4y ®)

8
+8yz dr dr



MEXNTBRBE A HMATETAE (14) PR—NMETE A 1 B s9tefl, sAREMS Q). &EITERE (15) H—MEB
ﬂglxnps HEN:

3
=Myl

dr

dy ()
Upp = X {(n2 — 4y )y — g } y
£Z

dXx ) }

—y® {(ﬂ? + 432 X0 g
2=Anul

idd w = Cyy sin(xi,\i“at) cos nyplU,, HE
w = {cos(4)si#at) (Apy cosny + By, sinny) + sin(4Ai#at)(Cn# cosniy + Dy, sin m,b)} U,

FRAR (1) M (), B Ay, By, Coy, Dy REEEH,
MERINESBHHARSE (15), SEBERNELERBREREY. ..

1426

Using the functions X ™ and ¥ and their first derivatives, and finally making T8 =

= =, we obtain:

0=A{n?X" —a(n? — 472" L7 } + B {n?¥ ") — 2(n? + dya) 2"}
0=Aq(n?+4y2?) X" — dxrn]} + B {(ﬂ2 — dyz? )Y ™ — :ﬂ%} :

These equations must be satisfied for r = [, i.e.,, for & = Al For this, their determinant must vanish since A and B

should not be zero. Therefore, for 2 = Al

dr dz

0 :8771232)((”)1“’(”) — 8yn’z? (X{n)

_ dy () dx (n)
— (n%(n® — 1)z + 164%z%) (X(”) — Y('“J—)

dx dz
(LX{n]d}rhﬂ

8yz? .
+8z dr dz




Determine X from this equation and the ratio of A and B from one of the two equations (14), so that the conditions (2)

are satisfied. We denote a root of equation (15) by A,,,, and define:

3
E=Anul

dy ™
mm=;ﬂm{ﬁﬁ—4mﬁnﬂm—z }

dx

dxﬁﬂ}}

dx

- y® {(n2 + 4y )X 2
T=Anul

then the equations (1) and (2) are satisfied by w = Cl,, sin(d)uflpat) cos nyp Uy, or also by
w = {cos(él)\fmat) (Apy, cosnip + By, sinni) + sin(él)\i#at)(cn# cosnY + Dy, sinna) } Upy,

where A,,,, By, Chyy Dy, are arbitrary constants.

Now we want to examine equation (15) more closely and first develop the right-hand side into a series of positive

powers...
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BEE z BN, BOMMAEERE XY™ Wi, 2, mibEhr U EEReTREN (10) HNEEER. 2
Bl, B ERES AR (9), Hbh XM 1Y) mexesz, dJuUis— umngEgssEkEs XMy ®),
HAtBEZR, ANEEITERANZAGHRR. 18

H = x®y(n)
H3HZAEHTREMSUEE H £F ¢ WEimMSHE. 25, #IA (9) hHRHRRE—mMSsrEs X™ i
Y WM REEMSH. Xi¥, BIEBHEIAE, BI9URE H REOM—MSREADSNEHTTRE
8

(n)y-(n) (n) dy™ (n) dx™ dx™ qy ™
XYy ! X dr ? Y dx ? dx dz *

BXATFEPRNE—TS (1) BE, HEEPORTSFAHERN A, A,, A;, A, 1BE, ASEFRBAEEN, HEE
XERY, FEESAPXOTENETHESE; TEEEIES:

dax?

MERHNERT X M Y_{”J‘ N REEM SHEIXEERGRE—MSHRANAEERN TR
d-:f)iini _ {I.QX{HJ + a’2 ,ji:.uj d;};-[;n] _ ng[.n] 4 bé%

3y (n) ) (n) v () : (n)
X - GSX{HJ + a';: X r - bSY[n] + bfi d}d/;r )

& & 2
d X' _ n rdx'™ dy'™ n rdy'"
dzt T {14X{ : + ey g det T b4Y( )+ bl dr

MtFEEH A TLUBIILTHE:

1+ (a2 + bp) Az + (a3 + b3) Az + (as + by + 6azby) Ay = 0,
Ay + abAy + (ah + 3by)Ag + (a) + 4bs + 6abby) Ay = 0,
Ay + bhA; + (b + 3az)As + (b + 4az + 6azby) Ay = 0,
245 + 3(a5 + by) Az + (dafs + 4b5 + 6ayby) Ay = 0.

¥ a #1 b MERARERRE.



As z progresses, we must first form the product X (™Y ("), However, in this process, the direct multiplication of the
infinite series (10.) can be avoided. Indeed, by using the differential equations (9.), which X™ and Y™ satisfy, one can
find a fourth-order linear differential equation for Xy (™) and determine this product while considering the form it
apparently should have. Set

H = Xyl(n)

and form the values of the first four derivatives of H with respect to & through repeated differentiation of this
equation. Then express the second and higher derivatives of X™ and Y™ using these functions themselves and their
first derivatives with the help of (9.). This results in five equations that give H and its four first derivatives as linear

homogeneous functions of the four quantities:

(n)y-(n) (n) dy'™ (n) dx'™ dx™ gy™
XYy ! X dr ? Y dr ? dr dr °

Multiply the first of these five equations by (1.), and the others successively by the undetermined coefficients
Ay, Ay, A3, Ay, add all of them, and determine these coefficients so that the factors of those four quantities disappear
in the sum; then the following identity is obtained:
2 &1 1
(18.) 0=H+ A% 4 4,25 4 A, 72 + 4,28,
If we write the equations through which the second and higher derivatives of X () and ¥ (") are expressed by these
quantities themselves and their first derivatives as follows:
d?x™ a X™ + q! ax™ : d'y™ _ b Y (™) 4 b dy™ :

o T &
' x'"m n rdXx'™ &y n rdy’'"

drt T a'?’X{ ) T a3= dre T bqY( : + b3 dr *
dixin (n) r dX'm diyln (n) ¢+ dym

dxt T as X +ay dr ? det T baY'™ + b} dr

then the following equations result for the coefficients A:

1+ (ag + by) Az + (a3 + b3) Az + (ag + by + 6azby) A4 = 0,
A+ RFQAQ + (af;; + 352)}13 + {ail + 4bs + 6&552)!&4 =0,
Ay + byA, + (b5 + 3az)As + (b + 4ag + 6azby) Ay = 0,
245 + 3(ay + b5) Az + (4aj + 4b5 + 6a5by) Ay = 0.

Substitute the values of a and b into these equations.
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M(9) SHPNLERPRBEXERRE, HiE A, Ay Az, Ay WEKAFRE (18), MZHFRETHR:
0= G4H + tdl ' AlH 4 4dH | LH

¢ dx 2 da? + x dz*

M (10) FTLUSH:
(19) H=X0y® = 22 (14 Biz' + Byz® + Byz'? + Byz'® + ...
Sk BXMEHAN EEHREINFES FES, §E

B. — — B
k En+knt2k—1n+2k?

Atk
(20.) By = 1-2---k--n+l-n+2--[;f:-n+1-n+2---n+2k"
ATHERER (15), EEEBRAFLUTRAIR:

Ak, BIMERLITSHE (9) FHvpiE:

dH _ x(n)dY™ | y(n)dx™
dr X dz +Y dz ! f ) . .

d*H _ 20 y(n)y(n) _ 1 (n) dY'™ (n) dx™ dx™ gy
de? T x? XY x X dx +Y dz +2 dr dz ?

& : , . nd ; (n) ’ (m) ; (n) ’ (m) 3 [n) (n)
G = —BEX Y 2 (XA YL s (XA -y - i
Bl X, BISE:

dy ™ dx'") _ dH
th}? +Yy(mdx™

(1) di? } @5 2 2
(m)d¥Y™  yn)dX™ _ &PH | 34PH  an’—4dH
Xr \ d-:‘r ] .YIJ de = dx? , dx? x? dr?
dx™ ay™ _ &PH , 1dH 27
de dr T dz? + r dr 22 H.

ZEARE (19.5 20), X=TEHKRA:



From the results obtained from (9.), solve these equations and substitute the values of Ay, Ay, A3, A4 into equation

(18.), then this equation becomes:

z?  dr 2 dx? + r dz’

2 24 42 3 4
0=64H—|—4n 4 dH dn"—4 d°H 4¢H+iﬁl

From (10.), it follows that:

(19) H=X0Y® = 2= (1+ Biz' + Byz® + Byz'? + Byz'® + ...
must be so; substituting this series into the above differential equation, we find
Bk — Bi 1
kn+kn+2k—1-n+2k?
thus
k
(20.) By = 1-2---k--n+1-n+2--(--nf;c-n+1--n+2- Snt2k°

To form equation (15.), we further need to expand the following expressions:

(n) dyinl (n) dxn (n) 4y -~ (n) dx'n dxinl gyin
X dx +Y dr ? X dx Y de ? dx dz

For this purpose, we use the following equations, which are identical in consideration of equations (9.):
dH _ (n dyin) n) dx
=X dx + Y dz

dr
d’H _ 2n° y(n)y(n) _ 1 (n) dY'™ (n) dx™ dx™ dy'™
dz?_z_zx Y Tz X dr +Y dx +2 dr dx ?
d

s _ —%X{NJ Y{-n) + 4-11;;-2 (X(n) y.'.'n] n Y(n] di:]) 48 (X(HJ d;’;'] - Y(-n] di[:]) N 6 dx™ dy™

d H d
dzd dx x dr de °

By solving these equations, we obtain:
(n) dy'™ (n)dx"™ _ dH
X ) dx +Y ) dx

| T odx
x '™ yr(n) ax™ _ #'H | 34H  an*-4dH
w ) de  —  dr? , X dax? x?  dr?
dx'"™ gy dtH 1dH  2n°
de de — d2? + z dz z? H.

Considering equations (19. and 20.), these three quantities are successively:



9p2n—1 o "
k=1

0

43:211—3
> " k(n + k)(n + 2k)Byz*,

2n—-2
’ (n2 + 2(2(11 + 2k)% — nz)kalk) :

oo
S22
(1-2---n) —

BRR, MRBERETF 22, MAE (15) TH:

(2L) 0= (4y — D)n(n— 1) + 52, (~1)* ot

Hep

Ep = —n%(n?—1)+4v(n + 2k)(n+ 2k + 1)(n(n — 1) — 2k + 4vk(n + k)),
Mp,=1-2---k-n+1-n+2---n+k-n+1-n+2---n+2k+ 1.

BILAEH, AR (21) B9iREE [ BRUGEIRIER A\, FTTLURERNE, XEERES r %R, REHE 489E%. B
tt, N8 IN BHP—ME, U —IA IMW/—1H8 —I\/-1 B2EHR. HERFIHEAR (21.) NAERNMRE
HERHEAIE; HRETLSEH, AT MBS, MLEN—MBRAIR, SAFE—TSSHIER. WaFFmnE, 0 2—1
IEfE; Eiky, E#IEH %, AF 1. BHILEH B, S21EHN, AltFE (21) alNHAERENES. Ak, &
AJREE R AREAEERNEARF AR, AT EEER, AJLUEE LT EHEA KA.

Big AN 2A1E 21) WAME. BFE—NME, B (16) MENEK U, = U, HFEMEA U’ WAILGE
B
(22.) (X'~ \1) [JUU'rdr = 0.

BITEEMAEIEAE, FHEEE ' FEZEH. 8
A=p+gv-1,
U=P+Qy—1.



4$2n—3 o0

m Z k(n + k)(n + 2k) Bz,

k=1

2n—2
mi)z (n2 + Z(Q(n +2k)% — nz)Bk:c‘“‘) :

s 4]
(1-2---n P

Next, if the factor 222 is omitted, equation (15.) becomes:

(21) 0= (4 — Dn’(n — 1) + S5, (—1)* Lo,

where

E,=-—n*n?—1)+4y(n+2k)(n+2k+1)(n(n — 1) — 2k + dvk(n + k)),
M,=1-2---k-n+1-n+2---n+k-n+1-n+2---n+2k+1.

It can be seen that the roots of equation (21.), when divided by [, are the values that can be set for A,,,,, containing only
powers of & whose exponents are multiples of 4. It follows that if I\ is one of its roots, then —I\, IAy/—1, and
—IX4y/—1 are also its roots. | will now show that the fourth powers of all roots of equation (21.) are real and positive;
from this it will follow that in every group of four roots, as given, there must be a real positive root. As previously noted,
@ is a positive quantity; thus -, which was set to % is greater than 1. From this it follows that E}, is always positive,
so the terms on the right side of equation (21.) have alternating signs. Therefore, it is impossible for the fourth power of
any root of this equation to be negative. To show that they cannot also be imaginary, the following indirect method can

be used.

Let A and A" be two roots of equation (21.). For the first root, the function U, = U determined by (16.), and for the

second root, U": then it can be shown that

(22.) (A*—N4) [[UU'rdr = 0.

We assume this has been proven and will show that A" cannot be imaginary. Let
A=p+qgv-1,
U=P+Qv—1.
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BHiE (21) HB—MBBAR (p—gv-—1l. BIT&N =p—qv—-1, MEU' =P — Q1. A1 (22) &
ol

pa(p? — ¢°) f;(P:2 + Q*)rdr = 0.

XBEHUHNRGTERNT, AACER—RIIEHZHN, ELbshns:

pa(p® — ¢*) =0,

XE A ASEHNES.

NAEZMNBIEEARE (22) NIEWHMY. Bikals, & (17) PLEHN w BREHEERE (1), aILlEH, mRig:
U L LU wpy — g\

EERtE:

(§ 118 d0-on

EV 1V oty gy
dr? + r dr -rEV = 4A°U.

BItbaE, FEHEE w TERtAEEARE (2) FAHE (13), B r = [H,

1420 d (U | 1dU _ 2lpr) _ 0l (dU _ 177} —
{ 148 d (drz + r dr ?"-’U rl (d-r' rU) — 05
T T

72 (23) AIUEH:

d 1 d
2vr _ n—1 -
ANV =" e rU,
d 1 d
2 1 i
ANU =" Y

BIREE—TAEPN V BERAAE-NARE, B2

4 n—]d 1 d 2n—1d 1 d_n
16A°U dr 31 dr arig T U.

BRENAZ, AUEE— AR, HPFRU N S U M. RE5E V HERA ...



Another root of equation (21) must then be (p — g4/—1)l. Weset \' = p — g4/—1,thenU' = P — Q+/—1.
Equation (22) becomes:

pa(p® — ) [y(P? + Q*)rdr = 0.

The integral here cannot vanish because it is a sum of positive quantities; therefore, it must be:
pa(p® — q°) =0,

and this is the condition for A? to be real.

Now we want to prove the correctness of equation (22). From this, it follows that the expression given in (17) for w

satisfies equation (1), which means if we set:
U, 1dU Trr 432
dr"+rdr‘_:}_2U_4AV

then simultaneously:

d*U | 1dU _ n’rr _ 432
oz t g — U =4V
d-V 1dV n- 2
o= tra — 7V =43U.

From this, it follows that the same expression for w satisfies equations (2) or equations (13), which are the same, so for

r =1,

d [ d°U 1 dUJ n’ n® ¢dU 1 o
—( pr +FH_P-—'—’U)_T_"(M - 3U) =0,
U -

2 2 9

ot
2y, 1dU _ n® U
( r? + r dr ‘ ) T =

‘cr_-.
= qu
a3

-5

Equations (23) can be written as:

d 1 d
EIr _ n 1 '“[T
NV = dr r2n- 1drr ’
d 1 d
2rr _ 1 -
42U =" o gy —r"V.

By substituting the value of V' from the first of these two equations into the second, we obtain:

lﬁ)t‘lU—Tn 1d _1 dr2n 1.d s,

dr 21 dr dr r"“ 1 dr

In the same way, an equation can be obtained by replacing I and A with U’ and A’. Then substitute the value of V'
from...
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160U M (25) RARRS

16X [UU'rdr
FHITIRE ARG, BERS

[rdrU - liﬁ,ilfrzl 1%1«‘1 di ny’,
XEF

= 16\" [UU'rdr.

Bl ER7E, BI|HGE
(26.) (16A* —X*) [UU'rdr = 25U’ (£r" 1L 4070)
_( U) (drr’” 1(?:" HU)
+ (L dr0) (@ “U)

d 2n—-1d 1 ey
(d'r drr’”lrjr U)

DA LGEE, EZARENNTRAREr =0/ r = | WEER. Hr =08, SHEAREMBAN, BRU MU’
Rpiwa)

ATIRERE r = [ FHEER, BINBAE (24). XEFEITLUER:
d'U 8 (n [ 1dU

drf 1120 r dr
d'U 3’ n4(n? +1“1+'§6‘] dU
dr® T P U+ (14-26)r* dr *

EEXLEFEURYA U 88 U =405, BIAUA U MU RE—MSHERT U 0 U (ZMIN=MSH;
HENHRIT (26) oo, SR (26) EMTMAEEIRHE. Alk, A8 (22) RIEHBN.

FBFTALL, REEZERNBHLAEE t = 0 HERENES. RINAERZEHHET EBHEE (17), £HDEE
AEREEMN. MNRAFE,

Substituting 16A*U from (25.) into the integral
16M* [UU'rdr
and integrating by parts four times, we obtain the integral

n-1d 1 d_2n-1d 1 i i
erTU i dr 7T gp d'rr”‘ldr U

which is equal to

= 16\" [UU'rdr.

Following this method, we get the equation
(26.) (16)1* — ,\’4] JUU'rdr = 25U (&r2n!

( . rU’ ) (d-r pin-l cfr HU)
+ (dﬂ:‘ ponT c?lr HUF) ( HU)

1
p pdn-1

e
e

r”U)

~
=%

I




To prove that it also vanishes for r = [, we apply equations (24.). These equations can be written as:

U _ 8 n® 1dU

a7 — 1w\ 2V v )

&U _ 3ad n’+(n"+1)(1436) dU
drt T T R U+ (1+26)r* dr *

Using these equations and those derived from them when U’ replaces U, we can express the second and third
derivatives of U and U’ in terms of U and U’ and their first derivatives; when performing the differentiations given in

(26.), we find that the terms on the right side of (26.) cancel each other out. Therefore, equation (22.) is correct.

So far, no consideration has been given to the conditions that our partial differential equation should satisfy at £ = 0.
We will now seek to generalize the found solution (17.) so that it also satisfies these conditions. Starting from the

expression,
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7 (17) Fig w B9E, AL p  n#ITRH, ARZPTWEBRTRA w. FE—PRAP, BITEIUREEFTHRIE
1B Ay EIEEAMMERIR A, BIFSEN » BEAANEEY; Bh: MR A= -, UE

Upp = U’
MR =XNv-1, MFE
U= (-)~u.

MERNE I\, Do Dy, D, BEABRE (21) BESRR, BRANEFERT, €8 1\, 2808, HiR
w=3Y" Zj;n {cos(-i)«ipat) (An, cosnyp + B, sinny)
. sin(d)a_ipat}(cn# cosny + D, sin ni,b)} Upp-

B¥W A, B,C, D %X HHE, #1585t =085,

w = F(Ta ilb]ﬁ

W = @(r,v).

HR F1® 24EN r 1Y VR, NE—PEHERILISE A, BE, MBEZ/E49LER C, D B9E; mAX
EENRESTETSEM; B, RFEETNAREEEE. F—1ME4EK

F(r,¢) = fo’:n Z':}:n(An# cosn + By, sinnth)U,,,.

HAMERE F(r,v) AIERFA ¢ BERIRZEMESZTR, B
F(r,v) = Fy(r) + Fi(r) cos ¥ + Fa(r) cos 2y + - - -
+F{(r)siny + Fy(r)sin2¢ + - -- .

ABEXMEFRAN F(r, ). BHAUEY,



In (17.), where w is set, we can take the sum with respect to u and with respect to n2, and set this double sum equal to
w. In the first of the two summations, we can restrict ourselves to considering the real positive values Ay: by
considering the negative and imaginary values A,,,,, we do not gain any generality in the expression for w; because: if
A = =X, then

Un = U,

and if A = X'4/—1, then

U= (-1,

Now let IAy), IAn;, [An,, - .oy LAy, . . . represent the positive real roots of equation (21.), arranged in order of their
magnitude so that [A,,, is the smallest, and let

w=3" Zf:n {cos(rﬁl)\i#at) (Apy, cosny + By, sinny)

+ sin(d)ufl#at](cn# cosny + Dy, sinn) } Uy,

The constants A, B, C', D must now be determined such that fort = 0,
w = F(r,¢),
5 =2(rv),

where F' and @ are given functions of r and 1. From the first condition, the values of A, B will be obtained, and from
the second condition, the values of ', ID; and these can be found in a similar manner as the former; therefore, it is

sufficient to show how the former can be found. The first condition requires that

F(r,v) = Z?::n Zf:n (Apy cosny + By, sin n)Uy,,.

We assume that F'(r, 1) can be expanded into cosine and sine terms of multiples of 1, i.e.,
F(r,v) = Fy(r) + Fi(r) cos ¥ + F3(r)cos2¢ + - - -
+F{(r)siny + Fj(r)sin2¢ + - - .

Then substitute this expansion into F'(r, ). It then becomes clear that



Fn(f‘} - chx, A-n,uUn,u:
(27) 477 0
Fi(r) = En By Uny

¥ F,(r) M1 F!(r) AIMAER; Eit, BMEXN A M B MiEE] UL RBLTEN r REER R

Unys Up,, Up,, ... BIERE. BIEZMEFZOEERN, HITAURA 22) AERPRANTERIIXLERN. ZHER
B, WX p ' 2HENFENK, NE:

o UnuUpyordr = 0

Ak, MARE (27) wBd:

Ay ]}f UnpuUpprdr = fﬂi F,(r)Upurdr,

By f{.f UppuUpurdr = f(f F,(r)Upurdr.

§.5.

ATRERLSEWNHTHE, HREF-LEASTHERFEERE. TESENGEDAEURSHERPEFENTIE, &
XBEEATENLRS. BIMNAEARARZMER. EXMERT, w BEIUTFTRAAERR:

(28.) w = {cos(4A},at)(Acosny + Bsinny)

+sin(4X2 ,at)(C cosnp + Dsinnw) } Uy,

SR8 A, BE, HiRkepEE, BIEAREATEREHREREA:

TREERMENTFRELE, w=004%; Eik, e 188FEEHE

(29.) Uy =0

BI=.

ory [BO-S5 a0
F;l(?') = anl Bn,uU-np

The functions F,,(r) and F),(r) can be considered as given; thus, determining the values of A and B reduces to the
task of expanding a given function of r into the functions Uy, Uy, , Uy, . . .. Assuming that this expansion is possible,
we can find these coefficients using the theorem expressed by equation (22.). This equation shows that if i and u' are
two different numbers, then:

S UnuUnyerdr = 0

Therefore, from equations (27.), it follows that:

Anp fff UnpUpprdr = fng F,(r)Uyurdr,

B, f; UnpUpprdr = f(f F,(r)Uy,rdr.



§.5.

For comparing theory with experience, it is important to investigate the case where the vibrations of the disk produce a
pure tone. The relationships of the vibration frequencies of the different tones that a disk can produce, and the nodal
lines present in each individual case, serve here as the main points of comparison. We now want to deal with this case.
In the same way, w must be represented by the following expression:

(28.) w = {cos(4)} at)(Acosny + Bsinny)

+sin(4X2 ,at)(C cos np + Dsinny) } Uy

L

The tone is determined by A, in such a way that its frequency, i.e., the number of vibrations completed in the unit of

time, is:
42 a

Ty

™

The nodal lines are those lines for which, for all values of t, w = 0; therefore, they contain the points for which either

the equation

(29.) Upp =0
holds.
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AEERNE, HERITAE
(30.) {A cosny + Bsi.nn'(,b =0,

Ccosny + Dsinny = 0
Ri. B (29) T L r NEEHINE. EEZVIRERNT ], EZ0 T E5EFISEROHNELINESES,
XLEFENHENANMEURATER, MSRM A, B, C,DiVEEXx. MR A: B# C: D, NHRE (30) IMEFAS
R, EXMERT, XEERH TN S%. MRFEXMILFIxER, AR (30) Stn Ty BWE, HPESHE
TEPEEE | Bit, BRTXEEZN, 78 n FEEFATRE, SEAFHLEES.

XL —REREFR LSEH—H. KREXRHA, TREMSEFISEOHENEXEESSIEZAM, NRHE
TRBERLELR, XETHNFEERRTFEFFEGELRENPBEFRTEEHRMNEMN. REERHA, AXLESH
T, BRSHRERFAT RS, BRINSRE. SElREAN, #ER 7 ey FEALKRERHS, BRdFamnd
BHRATEE, MERZ. NIREEEX—GBNNAR, HNATEE—DTFEEN, EMEFH—MIERREIS—
MIE, MEFESNERAR (28) MERTRNES#HT. T, REXEFTH—FITIEX—=.

Chladni @3R3 A3, AEERHMEERNERE (BINEAERN n ENERE), BEiRepZEiR T —fiERst,



It must be satisfied, or the two equations
(30.) {Acosmﬁ + Bsinny = 0,

C cosnyy + Dsinny = 0
hold. Equation (29.) provides certain values of r as roots. The number of real roots it has that are smaller than [ is the
same as the number of concentric circles with the periphery of the disk that appear in the sound figure; the number and
size of these circles depend solely on the tone and are independent of the values of the coefficients A, B, C, D.
Equations (30.) will not be satisfied for any point if A : B = C : D; in this case, these circles are the only nodal lines. If
this proportion exists, then equations (30.) give n values of 1, each two consecutive ones differing by =; thus, in
addition to these circles, there are also n diameters as nodal lines which divide the periphery of the disk into equal

parts.

These general results of the theory are essentially in agreement with experience. The experiment shows that the nodal
lines consist of circles that are concentric with the periphery of the disk and diameters that divide these circles into
equal parts, if we ignore certain distortions that these lines suffer and which, as it seems to me, mainly have their basis
in the fact that the disk is not completely free as the theory assumes. The experiment also shows that at a certain tone,
sometimes diameters occur as nodal lines, and sometimes they are missing. When they are missing, the sand scattered
on the disk is arranged along the diameters; however, these do not remain fixed during the movement of the disk but
oscillate. If one wanted to explain this interesting phenomenon, one would have to follow the movement of a grain of
sand which, being thrown from one place on the disk to another, is hurled from one place to another while the disk

itself performs the motion expressed by equation (28.). However, | will not go into this consideration here.

Chladni found through experiments that the frequencies of tones which have the same number of diameters in their

sound figures (i.e., the tones corresponding to the same value of n), except for one case,
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HFERNER, E5ESLBHAGZHNTFINXRANATEENHERRIERESH. HMTHIIHAIRICHEMH THEE
BIlE. XTLUMARE (21) BERHEFLH.

WFEAR (10) PRE-NHRBRENEK Y ), Poisson FFE T U FHUHH:
_ 1 4 . - (1.3 1 (13577 1

YO = Wor NG {(CU‘L" 2z + sin 2z) (1 ~ 12 [W2F T 1234 ([ear )}
. e 12 1 (1352 1 (1.357.9°% 1

+(sin 2z — cos 2z) (Tﬁ ~ 123 (G6zf T 12345 (@zp

LRI, RILURE

0) _ _1 = 1 1, (13 1 (1.3.5° 1
X0 = 2./7 Jz {1+ 16z T 12 (16x)? + 923 (16z)? + }

MFAFE (10) BILEE:

(n+1) _ 1. md [¥™
Y = 2T @\ )

X(n+l) — lpnd (X[nl) .
2 dx

"




MBEXBE n = 0 HALEAENESEAE YO, XO, namuszzemegs YD, XU puxtegseh 2 aT ik
Mg YD XO) == aagT:

Y('n] =
. 1—4n?)(9—4n? 1—4n?)(9—4n?)(25—4n?) (49— 4
v'%% {(003(2:.2 — %mr) + sin(2z — %nﬂ)) 1! nl)l{z ) {151_1,): + (1—dn)( :;1}2“ n)(49-4n’) (1612:]-1 + .-
2 A2 (9— 402 (25— dn2
+(sin(2z — %mr] — cos(2z — 3nm)) ({l :n ) = — (1—dn 3(91;’;}(2 4n’) {1[;1.1»}:! R )} ,
(1-4n?) 1 (1—4n®)(9—dn®) 1 (1—4n®)(9—4n?)(25—4n°) 1
X = 2,,/‘ {1 R ﬁ + 4 1.2 (162)2 + 123 (16z)* - } :

XA MRS — MERRT RN TELORS L BISEF DHA BN S0 HEMTAH. mBgxLE Y 4
X wEfAARE (15), ZARS5AR (21) H#E, NAELL....

For the deepest case, it behaves similarly to the squares of consecutive even or odd numbers, depending on whether
the number of diameters is even or odd. | will now show that the theory provides the same law. This can be seen from a

transformation of equation (21.).

For the function Y (), which is determined by the second of equations (10.), Poisson developed the following semi-

convergent series:

Y(“):,L_%{(cos2$+sin2m]( - W IJ—I—(IEI"'."?]Lr L _)}

V2 o 1.2 {15.1} 1.2.3.4 (16z)*
. o 12 1 (1.3.5) (1.3.5.7.90° 1
+(sin 2z — cos 2z) (Iﬁ ~ 123 (lf‘;r:)' + Y3345 {Wer
In a similar way, one finds
0) _ 1 e* 12 1 {1 3] 1 (1.35)° 1 L
X0 = 2/7 T {1 + 3 1(‘: + 2 (16z)2 T 133 (16z)* + } :

From equations (10.) it follows that:
n+1 1.nd (Y™
Y[n ) — 1z o ) :

dz "
(n+1) _ 1_nd (X"
X 2$ dr x" :

If we set m = 0 here and substitute the above series for Y(n), Xm), we obtain similar series for Y“J, X(l); from these,

we again find similar series for Y{g}, X etc. The result is:

yn —
. 1—4n%)(9—4n? 1—4n%)(9—4n?)(25—4n")(49—4n’
%ﬁ {(CUE( % m) + sin(2z — %nﬂ)) 1-¢ nl).{Q - {1[;11»)’ + Gk 111}2 34 - (mlm)-l + -
1—dp? 1—4n®)(9—4n?)(25—4n?
+(sin(2z — % nm) — cos(2x — %””}) ({ T ] 1(]'? — 1.21.13}( = {1[311}'1 +- )} )
_ (1— 4n ) 1, (1-4n®)(9-4n*) 1 (1—4n®)(9—4n?)(25—4n?)
X = 2( ‘.a;r. {1 + oz T 1.2 (162)° + 1.2.3 1&}‘ +- }

The first of these two series has already been given in a slightly different form by Professor Jacobi in Schumacher's
Astronomical Notices, Vol. 28, p. 94. If these values of Y (™) and X are substituted into equation (15.), which is
identical with equation (21.), then...
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MERAR log(2z — %mr) BILRT AR RBEE, ZRNREE Flm PIRRIEH, HIEEE:

e o
16z (lz)<  [Lléx)

(31.) tan(2z — inm) = —— % ,
*l+ﬁ+.{1h‘”.’!+“_

Hep

A =7,

B = (1 —4n?) -8,

¢ =7(1 — 4n?)(9 — 4n?) + 48(1 + 4n?),

D = —1((1 - 4n?)(9 — 4n?)(13 — 4n?)) + 8(9 + 136n2 + 80n?).

MR z BK, ALUSHIE 31) HIEN 0; BIXWAR, TUSHRSTZROGEMNE, BRAR Ln(n + 2h) FIE
8, % hiRERE, RtEH EEREN. & Chladni IMME: SHEOEDRSHE G1) RNTESRE. i
5, EHHTRERE, BESRES, FoNSESERRTRTSOAXAREE; CRfT —HENSERER
Fn WFAESE (BTRED), HURSHRERTRE. XTEMETN L %E, HETEEFRTET u; BEHTF
8RB pul,,, B, BEMT Lr(n + 2u): X—425 Chladni HNERL—5.

ATHE— n BHSESE, PATEHE Q1) N8R, ZAETLBIR o iR TR

A 8 12
0=1- 4+ — T +etc,

Hbhn=0fMn= 1. it8E4%H log A, log A,, ... BIEINT:

From the resulting equation log(2z — %mr), it can be expressed as the quotient of two series that progress according

1 o
to the powers of 17— This yields:
by c oo
T M6 (6

B D R
At 16z + (g T

(31.) tan(2z — inm) =

¢ =(1 - 4n?)(9 — 4n?) + 48(1 + 4n?),
D= 7 L((1 - 4n2)(9 - 4n?)(13 — 4n?)) + 8(9 + 136n” + 80n?).



If = is large, the right side of equation (31.) can be set to 0; this way, one obtains approximate values for the roots of
the same equation, which are the values taken by the expression %ﬂ(n + 2h) when h is set to whole numbers. From
this, the above-mentioned law discovered by Chladni follows: that the vibration numbers of the tones are proportional
to the squares of the roots of equation (31.). Furthermore, this equation shows that the proportionality of the vibration
numbers with the squares of consecutive even or odd numbers becomes closer as the tones become higher; and it
provides a means to conveniently determine all tones belonging to a value of n, except the lowest, with greater
accuracy. Regarding the number h in the approximation value of [,,, numerical calculation shows that it equals p; thus
for large values of pul,,,, it is approximately i‘!r(n + 2p): a result that is in complete agreement with Chladni's

observations.

To determine the lowest tones for a value of n, one must calculate the smallest roots of equation (21.). This equation
can be brought into the form:

. I-’l .‘L’ﬂ' 2:l'_?
D—l—I—FE—I—f—GtC:

by dividing it by ! forn = 0 and n = 1. The calculation gives the following values of log A1, log As, . . .:

85 T

F O = %, Bly = % (#8482 Poisson) :

n 0 1 2 3
log Ay 06642079 13480266 0.2650703 0.973 3073
log A, 25351132 35880591 20615798  3.105 2465
log A3 5.097 3650 64065347 45889514  5.868 2055
log Ay 8149924 9.655978 7.620 8431 9.083 199

log A; 11.583 4 13.249 6 11.040 582  12.653 148

log Ag 1533 17.130 14.776 04 16.516 13
logA; 213 18.778 0 20.629 0 -
log Ag - 23.01 24.96 -

log Ay - - 29.48 -



HFO=1, By =2 (iRIE Wertheim):

n
log A
log A,
log Az
log A,
log A5
log Ag
log A~
log Ag
log Ag

0

0.681 2413

2.556 3026

5.120 4304

8.174 058

11.608 3

15.35

213

1

1.352 1826

3.594 0911

6.413 6351

9.663 768

13.257 8

17.138

18.736

22.97

B H LT log(\,,.0)* BOfA:

WF O =1
L n=>0 n=1
0 - -
1 0.69367 1.41553
2 1963 08 234829
#HF 0 = 1:
L n=>0 n=1
0 - .
1 071168  1.42012
2 196712 235022

E &R, FIHT Chladni ZMBF LS, HEHTBERH#T IR ENR....

0.278 37

1.891 17

n=2

0.236 38

1.889 97

2

0.224 2682

2.018 9332

4.546 2236

7.578 3037

10.998 263

14.733 92

20.587 7

24.92

29.44

1.006 51

2.246 93

n=3

0.970 14

2.242 98

3

0.939 3022

3.066 4444

5.827 9058

9.042 324

12.612 037

16.474 93



* Kirchhoff, on the equilibrium and motion of an elastic disk.

Forf = % ie, v = % (according to Paisson):

n
log A4
log A»
log As
log Ay
log A5
log Ag
log A
log Ag

log Ag

0

0.664 2079

2.535 1132

5.097 3650

8.149 924

11.583 4

15.33

213

1

1.348 0266

3.588 0591

6.406 5347

9.655 978

13.249 6

17.130

18.778 0

23.01

2

0.265 0703

2.061 5798

4.588 9514

7.620 8431

11.040 582

14.776 04

206290

24.96

29.48

Forl =1,ie,vy = ; (according to Wertheim):

log A,
log As
log As
log Ay
log As
log Ag
log A7
log Ag

log Ag

0

0.681 2413

2.556 3026

5.120 4304

8.174 058

11.608 3

15.35

21.3

1

1.352 1826

3.594 0911

6.413 6351

9.663 768

13.257 8

17.138

18.736

22.97

2

0.224 2682

2.018 9332

4.546 2236

7.578 3037

10.998 263

14.733 92

205877

24.92

29.44

3

0.975 3073

3.105 2465

5.868 2055

9.085 199

12.653 148

16.516 13

3

0.939 3022

3.066 4444

5.827 9058

9.042 324

12.612 037

16.474 93



The following values of log(,,,,l)* are derived from this:

_ 1,
Forf = 3

[T n=>0 n=1 n=2 n=23
0 - - 027837  1.006 51
1 0.69367 141553 1.89117 2.24693

2 1.963 08 2.348 29 - -
For@ = 1:

[T n=>0 n=1 n=2 n=23
0 - - 0.23638 097014
1 0.71168 142012 188997 224298

2 196712 235022 - -

In the following table, the tone ratios found by Chladni are listed together with those given by the calculation. They

are...
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SHH—TEEEA CHEFITURENEE. 7458 Ch. BI5IRE Chladni WEZINEHE, EiHF8 P.OIIFEETRIR
0 = 1 HBENEAE, EFE W NFIFEETER 0 = 1 tEHNZE. FERESHNTHIEE 9. SNTEY
NEREIETAEPNSNPHSTERET, HML + 5 -, REERRTELLZS ABRSNEER.

g n=0 n=1 n=2 n=3

Ch. P. W. Ch.
0 — _ _ _
1 Gis Gis+ A+ b
2  gis+ b- b+ e+

MEFNTRERIHELERZEFEEEER. NEIINZTESET Poisson fRig (0 = %} TENEREREL, E58
F Wertheim {512 (0 = 1) it RIERELE, RERK, UETFAEMPFERIX—RIZELEL.

AR REEN T RSt —ERESRSHENATINESR. Srehlke BERIFOMIRHT tH TR — LR HEHR
ENER, XENERERITERRIBE LHITH., XERFHIESIEZEIEA, KM Dove's Repertorium £=%%

113 RRINAHEE—F, HP—1TERON 6 R, BEERN 1%, 5—1TEHRATRY, EEA 114, ATIERE
FHREEMNER ZVERE, FTLBINEFREENTRE (FEETRER) RIILUTHAFONNER.

*) Chladni £t S FE PR H BHRIRAMATHIER B TYEE, BINTEXEE?R, EfI1HSEMILt.

The tones that a disk can produce, whose lowest tone is C, are given. In the columns labeled Ch., the tones observed by
Chladni are found; in those labeled P., the tones calculated under the assumption 8 = %; and in those labeled W., the
tones calculated under the assumption # = 1. All data refer to the average temperature *). Each calculated tone is

indicated by the nearest tone below it in the scale, with a + or - added according to whether it was slightly higher or

lower than this tone.

g n=0 n=1 n=2 n=3

1 Gis Gis+ A+ b

2 qgis+ b- b+ e+



There are considerable deviations between the observed tones and those determined by the two calculations. The
observed tones agree somewhat better with those calculated from Poisson's assumption (@ = :1—2] than with those
calculated from Wertheim's assumption (f = 1); however, the deviation in the former case is too large to draw any

conclusion against this assumption.

Now | turn to the comparison of some numerical results which the theory gives regarding the nodal lines with the
corresponding results of observation. Professor Srehlke has kindly provided me with the results of some measurements
of outstanding accuracy which he made on two circular glass disks. These disks were manufactured with the same care
as the square disks on which he made the measurements mentioned in Dove's Repertorium Vol. llI, p. 113; one had a
diameter of about 6 inches and a thickness of 1 line, the other a diameter of 7 inches and a thickness of 1.1 lines. As
proof of the perfection of the disks and the accuracy of the measurement method, the small differences in the following
numbers, which were found by measuring different diameters of the nodal circles without nodal diameters on a disk,

can serve.

*) Chladni does not explicitly state in his acoustics from which average temperature his data are taken; but it seems

unguestionable that they do so.
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EFE: R@A:

24 <sup>L</sup>, 415 24<sup>L</sup>, 42

43 44

44 425

42543

405 415

F9{E 24<sup>L</sup>, 423 24<sup>L</sup>, 426

EARCAINX MR F—HFAEMRN, 5—T7ERIEF (Al ERIEEERRE. BEEXmIEF7%
BT 2B FENESREPoissonfRigZ Wertheim{Rig it B E—EFIL.

oL HE
| I
n=0,p=1 10,6792

n=1,pu=1 10,7811



MEFER(n=0, p="1)NTH RSB+ EthSavartllEd; thE=TFENEFLFE T UTE:
1.0,6819, 1.0,6798, 1.0,6812.

XEEHIEEPoissonk FEFARIREIMF R PIBIZR . PoissonTEHEBiIZ0="-MERT, ITE Tn=0N8EZ AR EMN
FH SR,

MWertheim{Ri&#S HAVE RS MPoissonfRIgHE S HBIEREETK; SStrehlkeBIMMERLL, EIB—FEE
. ERER, XHF R} PoissontifRiz, BABILSKEZENTE—HELEHEN, BARAFRENRFHAT
2 REECPFEIRBIFIE TR,

BR T ERARAES, StrehlkeeERMBRMB T HM—EFAXTENB FIONELER. TIRFIHXLEER, FT EEME.....

Front side: Back side:

24 <sup>L</sup>, 415 24 <sup>L</sup>, 42

43 44

44 425

42543

405 415

Average 24<sup>L</sup>, 423 24<sup>L</sup>, 426

Just as regularly as this disk, which may be denoted by |, the other 7-inch disk, which shall be called Il, also showed
itself. | will list the values of the radii of the nodal circles produced by these two disks together with the values given by
the calculation based on Poisson's or Wertheim's assumption of 8.

Observation  Calculation

I Il

n=0, p=1 1.0,6792

n=1, p=1 10,7811



The radius of the nodal circle corresponding to the tone (n=0, p=1) was also measured by Savart; he found the

following values for three different disks:
1.0,6819, 1.0,6798, 1.0,6812.

These data are mentioned by Poisson in his investigations about the vibrations of a circular plate in the above-cited
treatise. Poisson calculated there the lowest tones and the corresponding nodal circles for the case n=0 under the

assumption B="~%.

The results derived from the Wertheim assumption deviate only slightly from those derived from the Poisson
assumption; they agree even better with Strehlke's observations than these do. In my opinion, this does not speak
against the Poisson assumption, because a complete agreement between theory and experiment cannot be expected,

since the disks subjected to the experiment do not possess all the properties assumed in the theory in strictness.

In addition to the above, Mr. Strehlke has informed me of the results of some other measurements made on less perfect

disks. | will list these results along with the corresponding...
88 71

FRITEERE 0 = 1 60 = 1 FAHNKAE,

PRENFE.

n, i nE HEE

et
I
b=

n=1,p=1 0781 0783
n=2p=1 079 0.81

n=3p=1 0838 0842
n=1,p=2 0488 0492

0.869 0.869

TN ER FEIFER 1.

HHA: 1850818,



The following are the numbers given by the calculation under the assumption 8 = % and 6 = 1.

Radii of the nodal circles.

mn, | Observation  Calculation
01
n=1p=1 0781 0.783
n=2pup=1 079 0.81
n=3pu= 0.838 0.842
n=1p=2 0488 0.492
0.869 0.869

Here the radius of the disk is set to 1.

Date: January 1850.



