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Abstract

Shell structures effectively resist external loads due to their characteristic geometric shapes. Shape optimization can further
enhance the mechanical performance of shell structures while preserving structural topology. This paper proposes a novel
shape design concept based on the hierarchical shape representation. We use a NURBS network to control the global sur-
face geometry and explicit spline components to capture local geometric features. The hierarchical representation enables
coordinated control of both global shape and local details using a small number of design variables, thereby reducing the
computational burden of the optimization problem. During the optimization process, the hierarchical shape variations are
implemented by applying global and local perturbations to the discrete triangular mesh of the shell surface. By employing the
computational conformal mapping technique, we obtain the parametric domain of the initial model, in which the hierarchical
perturbations are constructed. The surface cutting operation and the multi-patch stitching scheme are employed to preproc-
ess the geometry for extension to complex shell structures. Numerical examples are provided to validate the effectiveness,
efficiency, and generality of the proposed hierarchical shape design method for complex shell structures.

Keywords Shell structures - Shape optimization - Moving morphable components (MMC) - Computational conformal
mapping (CCM)

1 Introduction 2011). Their superior span-to-thickness ratio and stiffness-

to-weight ratio enable them to play a critical role in various

Shell structures can effectively bear external loads based
on their geometric shape and have been widely applied in
both nature and engineering practice (Chapelle and Bathe
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fields such as architecture (Rian et al. 2018), shipbuilding
(Yu et al. 2015), aerospace engineering (Talebitooti and Zar-
astvand 2018), and the automotive industry (Lee et al. 2003).
Shape optimization of shell structures can enhance structural
performance by modifying the outer profile while preserv-
ing the structural topology. This approach has significant
application value in typical thin-walled structures such as
aircraft skins and pipeline shells, and has attracted extensive
attention from researchers. From the perspective of imple-
mentation methods, shape optimization of shell structures
can be broadly categorized into two main types: CAD-based
methods and node-based methods (Samareh 2001).
CAD-based methods typically describe the middle
surface of shell structures using spline tools commonly
employed in geometric modeling, where the design vari-
ables correspond to the geometric parameters defining the
splines. The development of various spline tools has greatly
advanced this approach. Surfaces such as Coons surfaces
(Afonso and Hinton 1995; Falco et al. 2004), Bézier sur-
faces (Wang et al. 2003), B-spline surfaces (Ansola et al.
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2002a, b; Suarez Espinoza et al. 2012), and NURBS surfaces
(Espath et al. 2011; Vu Bac et al. 2018) have been employed
to describe shell shape, enabling both accurate representa-
tion and efficient optimization of shell structures. Compared
to Coons and Bézier surfaces, B-spline surfaces success-
fully address the issue of local control by introducing knot
vectors, enabling finer model adjustments. Building on this,
NURBS (Non-Uniform Rational B-Splines) surfaces (Piegl
and Tiller 2012) further incorporate weights to rationalize
the formulation, providing a unified mathematical frame-
work for representing both regular and free-form surfaces,
thereby significantly enhancing geometric representation
capabilities. With their high flexibility and degrees of free-
dom, B-spline and NURBS representations have become the
primary modeling tools in CAD-based shape optimization
methods for shell structures. CAD-based methods leverage
the inherent smoothness of spline representations to control
structural shapes with a relatively small number of design
variables, resulting in smooth optimized designs. However,
these methods often suffer from the computational burden
of remeshing at each iteration. Isogeometric Analysis (IGA,
Hughes et al. 2005) employs the same basis functions used
in geometric modeling, allowing the design model and
analysis model to share a common parameterization. This
approach effectively reduces the frequent communication
and remeshing between the design and analysis models,
thereby significantly improving computational efficiency.
Combining IGA with shape optimization is highly attractive
and has been widely applied in structural and fluid dynamic
shape optimization (Wall et al. 2008; Qian 2010; Ngrtoft and
Gravesen 2013; Park et al. 2013; Wang et al. 2018). In addi-
tion, Kang and Youn (2015, 2016) and Chasapi et al. (2024)
achieved shape optimization of shell structures with complex
boundaries or holes by combining IGA with trimmed sur-
face analysis (TSA) techniques, ensuring smooth geometric
transitions along the trimmed boundaries. However, due to
the lack of local refinement capability in the tensor-product
spline spaces underlying isogeometric analysis, traditional
spline formulations offer limited flexibility in controlling
geometric details, which may lead to a certain dependence
of the optimization outcomes on the initial shape. As the
geometric complexity of shell structures increases, the dif-
ficulty of spline-based parameterization rises significantly,
thereby limiting the further application of this technique in
shape optimization of complex surface structures (Hirschler
et al. 2019).

In contrast, node-based methods (also known as CAD-
free, parameter-free, or grid-based) offer an alternative
parameterization for shape optimization. These methods are
constructed directly on the finite element discretized mesh
of the shell structure, with design variables defined as the
nodal coordinates or their perturbations, thereby providing
greater flexibility in the optimization process. Although this
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method provides a large design space, the substantial num-
ber of design variables may reduce the overall optimization
efficiency. In addition, the optimized shapes can sometimes
exhibit non-smooth or discontinuous geometries, which
may pose challenges for direct application in engineering
practice. Therefore, regularization techniques are commonly
employed in shape and topology optimization to improve
the smoothness of the design. Among these, filtering meth-
ods, often referred to as smoothing techniques, are the most
widely used and can generally be categorized into implicit
and explicit types. Implicit filtering generates smooth
designs by solving an elliptic partial differential equation.
Representative methods include the traction method, also
known as the H! gradient method (Azegami and Wu 1996),
Sobolev smoothing (Jameson and Vassberg 2000), and the
enhanced traction method (Azegami and Takeuchi 2006).
The work by Swartz et al. (2023) provides a comprehensive
overview of implicit filtering techniques, greatly facilitat-
ing researchers’ understanding of these methods. Explicit
filtering achieves field smoothing through convolution with
kernel functions. Originally introduced to address the check-
erboard issue in topology optimization (Sigmund 1994), it
has also been found effective in shape optimization (Le et al.
2011). Hojjat et al. (2014) and Bletzinger (2014) proposed
the vertex-morphing method, demonstrating the application
of explicit filtering techniques in shell shape optimization.
In recent research, Schmolz et al. (2025) introduced a simul-
taneous optimization strategy for shell shape and thickness
based on the vertex-morphing method. They conducted a
comprehensive and detailed comparison with the approach
proposed by Triff (2023), verifying the impact of the choice
of filtering technique (implicit or explicit) on the results of
combined optimization. Radtke et al. (2023) conducted an
in-depth analysis of both explicit and implicit filtering tech-
niques. Najian Asl and Bletzinger (2023) investigated convo-
lution-based (explicit) and PDE-based (implicit) shape filter-
ing methods, and introduced an implicit volumetric filtering
approach that simultaneously controls boundary smoothness
and preserves internal mesh quality during shape optimiza-
tion. Although the application of various filtering techniques
effectively improves the smoothness of optimization results,
the additional operations introduced inevitably increase the
computational time. Therefore, finding a balance between
high flexibility and computational efficiency has become
one of the key research focuses in the development of this
method.

Overall, the two main existing shape parameterization
methods each have their own advantages. To combine the
strengths of both shape optimization approaches, this study
proposes a novel shape parameterization method based
on spline models from CAD-based methods and discrete
meshes from node-based methods, enabling effective global
shape representation. The method describes the shell middle
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surface using the discrete triangular mesh and constructs a
standardized parametric domain for the shape description
through geometric preprocessing. A global shape network
is built in the parametric domain using NURBS, and shell
geometry variations are achieved by computing a perturba-
tion height field applied to the discretized middle surface.
In the proposed approach, variations of the shell middle
surface shape are realized through normal perturbations of
mesh nodes, while the design variables correspond to per-
turbation coefficients at the NURBS network control points.
This parameterization method thus combines the advantages
of CAD-based methods (few design variables and no need
for filtering) with the geometric flexibility characteristic of
node-based methods. In addition, we incorporate computa-
tional conformal mapping technique (Lui et al. 2013, 2014;
Meng et al. 2016) as part of the geometric preprocessing to
achieve a unified parameterization of the shell surface. By
integrating the principles of computational conformal map-
ping (CCM) technique with the framework of the moving
morphable components (MMC) method (Guo et al. 2014;
Zhang et al. 2016), Huo et al. (2025) employed embedded
spline components to optimize the surface topography of
complex shell structures and investigated the influence of
local shape variations on structural performance. Their
study demonstrated that rich topographical adjustments on
the shell surface can significantly enhance structural perfor-
mance. However, in their approach, the global geometry of
the structure remains fixed, and the optimization is limited
to local shape modifications. To further explore the com-
bined effects of global shape and local geometric details on
structural performance, this study introduces local spline
components into the proposed global shape optimization
framework. This allows for simultaneous optimization of
local features while the global geometry evolves, enabling a
hierarchical shape optimization strategy that fully leverages
the impact of shape variation on the mechanical performance
of shell structures.

In the proposed method, the global and local shape opti-
mizations of the shell structure are performed concurrently,
with both types of design variables incorporated into a uni-
fied vector and updated simultaneously. The advantages of
the proposed approach can be summarized as follows: First,
the shell geometry is modeled using a mesh-based repre-
sentation, which enhances adaptability to complex shapes.
Shape modifications are realized by applying both global
perturbations defined via NURBS and local perturbations
described by embedded components directly to the mesh
nodes, thereby eliminating the need for remeshing during
the optimization process. Moreover, the use of local spline
components within the MMC framework, together with the
NURBS-based global shape network, significantly reduces
the number of design variables, resulting in lower computa-
tional cost for the optimization problem.

The remainder of the article is organized as follows:
Sect. 2 introduces the approach for realizing shape changes.
In Sect. 3, the optimization problem is formulated with stiff-
ness maximization as the objective function, accompanied
by a detailed sensitivity analysis. Section 4 addresses key
technical considerations relevant to the proposed approach
and summarizes the overall design process. In Sect. 5, sev-
eral representative numerical examples are presented to vali-
date the effectiveness of the proposed method. Finally, the
conclusions and future research directions are summarized
in Sect. 6.

2 Shape description

This section outlines the implementation process of hierar-
chical shape description. For a shell structure to be designed,
the middle surface of the shell is employed for structural
modeling and its shape variations are realized through per-
turbations of the middle surface. We take the plane of a plate
shell structure as an example to describe both the global
and local perturbations, from which a hierarchical perturba-
tion field is formulated. Subsequently, shape variations of
complex surfaces are achieved by applying the hierarchical
perturbations.

2.1 Global shape perturbation description

Taking the rectangular plane S shown in Fig. 1 as an exam-
ple, a point x = (&, v) on the plane is perturbed along the
unit normal vector V(x) to a new position x*(x) expressed as

x*(x) = x + hi(x) - N(x), (1)

where hi(x) represents the global perturbation height field
at point x. Since the proposed method is designed for dis-
crete mesh models, N(x) is defined using discrete differential
geometry (Taubin 1995). Inspired by CAD-based methods,
Non-Uniform Rational B-Splines (Piegl and Tiller 2012) are
introduced to construct the global shape network, thereby
enabling the description of global shape perturbations. As
shown in Fig. 2, the global perturbation height field hfé(x) at
point x is defined as

Yo Ximo Nip(N; (ewgh;
Yo Tt Nip@N, (e

hix) = @)

where N; , and N, , are basis functions in the u and v-direc-
tions, respectively. The parameters n and m denote the num-
ber of basis functions (corresponding to an n X m global
shape network), and p and g represent the degrees of the
basis functions (p = ¢ = 2 in this study). The symbol A,
represents the perturbation coefficient at the NURBS control
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xX'(x)=x+ hg(x) *N(x)

Fig. 1 Shape changes are achieved by perturbing the point on the surface. The perturbation direction follows the normal vector at each point of

the initial surface

/ NURBS network

x=wv)’

Fig.2 Description of the global shape perturbation. Each point x on the initial surface S corresponds to a height value on the NURBS surface,

which is regarded as the global perturbation height field h:‘;(x)

points, while ; denotes the corresponding control point
weights (set to w; = 1in this study). The basis function
N, ,(u) (and similarly N, (v)) is calculated using the Cox-
De Boor recursive formula (De Boor 1972)

1, ifu, <u<u;
N. — ’ i="= i+1
1000 { 0, otherwise,

o 3
u— ui ul 1 u
N;,(u) = —wNi,p—l(u) y—

i+p — Yi

Ni+l,p—1 (w),

Uitpy1 — Uipg

where u; denotes the i-th knot in the u-direction knot vector.
The knot vectors in the u and v-directions are defined as

U= {uptty ..l }s 4)

V={vVp Vgl }- ®)

By introducing the NURBS-based shape network, global
perturbations of the height field are achieved. The corre-
sponding perturbation coefficients are used as design vari-
ables, denoted as D% = (hOO, by, h )

e My

@ Springer

2.2 Local shape perturbation description

In Eq. (1), the global shape variation of the plane S is
achieved by defining a global perturbation height field hi(x).
Similarly, in this subsection, we introduce the spline-based
shape components developed in Huo et al. (2025) to define
local shape perturbation height fields hlS(x) for realizing
localized shape variations. This approach is inspired by the
concept of moving morphable components (Guo et al. 2014;
Zhang et al. 2016) in explicit topology optimization frame-
works, enabling an explicit representation of local shapes.
As a result, the proposed method benefits from a reduced
number of design variables, smooth and well-defined struc-
tural boundaries, and improved interpretability of the final
designs. Specifically, the topology description function
(TDF) is introduced to represent regions subjected to local
shape perturbations. For the i-th local shape component on
the rectangular plane S (Fig. 3a), its TDF is expressed as

¢,(u,v) >0, if (u,v) € S,
¢,(u,v) =0, if (u,v) € 95,, (6)
$;(u,v) <0, if (u,v) € S\(S; U 9S;),
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Fig.3 Schematic illustration of

local shape perturbation height (a)
field construction. a The TDF ¢,
indicates the local shape pertur-
bation domain. b Introduce the
height variable k! to represent
the height field corresponding to J/
the local perturbation domain. S

¢, d represent the assembly

process of multiple local shape (©
components, forming the final

local perturbation height field

h’g i.e. Eq. (8)

where S; represents the region occupied by the i-th local
shape component, and dS; denotes its boundary. However,
the TDF in Fig. 3a only indicates the region requiring local
perturbation without reflecting the perturbation height field
hlq To address this, a height parameter is introduced to define
the perturbation height field (Fig. 3b), which is expressed for
the i-th component as

hi(u,v) = h? - H(¢;(u,v)), @)

where £ is the design variable, representing the height of
the i-th local shape component, and H(-) is the regularized
Heaviside function that maps values to the interval [0, 1].
After determining hf for each local component, the local per-
turbation height field for the entire plane S can be expressed
as (Fig. 3c, d)

hl = max (k! KL, ... S, ... R ), ®)

Fig.4 Schematic illustration of
a local spline component with
nr=38

() h§i= h;
hékv /I

define h u

(d)

move and merge

where nc is the number of local shape components in the
design domain.

Next, the expression for the TDF ¢;(u, v) is formulated.
To describe more intricate local shape changes, this study
employs spline-based components to represent local shapes.
To achieve this, the spline-based TDF ¢;(u, v) is defined as
shown in Fig. 4. First, a local coordinate system (', V') is
established as

(u’) _ [ cosb; sing; | (u—u

v ] 7| —siné; cosé, < V= )’ ®)
where uf] and va are the local coordinates of the i-th com-
ponent’s center, and 6, is its rotation angle relative to the
global Cartesian coordinate system. Parameters (ug, vf), 0,
allow for rigid translation and rotation of the component.

Next, the Cartesian coordinates are transformed into polar
coordinates (7, @)

@ Springer
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=)+, (10) ¥ @) =x+H0xD) N). (16)

VI
@ = arctan = (11)

The boundary of the i-th spline-based component is then
expressed in terms of a radial basis function as

(@) = %Rk,p(q))tf, 12)

where tf.‘ represents the k-th shape control coefficient of the
i-th component (# = /¥ ensures a closed boundary), and
R, ,(®) is a NURBS radial basis function of degree p (p = 2
in this study). The NURBS radial basis function is defined as

_ Nk.p((ﬂ)wk
Rk,p(go) - Z;‘;U N,',,((p)w, bl (13)

where w, is the weight associated with the k-th basis func-
tion (w;, = lin this study), and N, , is the k-th B-spline basis
function defined using the Cox-De Boor recursive formula
Eq. (3). Finally, the TDF ¢;(u, v) is expressed as

. q
G ) =1- <7l(¢)+ep5) ’ 14)
where g is the shape index (g =2 in this study) and
eps = 10713 is a small value to prevent singularities. Benefits
from the flexibility of NURBS-based modeling, complex
local perturbation regions can be effectively represented.
The design variable vector for the i-th spline-based com-
ponent is expressed as D' = (i Ve, 0,20 12, e ).
The design variables of all local shape components are then
assembled as D! = (Dl, ...D, ... ,D”C).

Up to this point, the global and local perturbations on the
plane S have been defined separately. The global perturbation
height field hi(x) is controlled by the design variable vector
D?, while the local perturbation height field hé(x) is governed
by D', with D# and D' being independent of each other. The
hierarchical perturbation expression for the plane S is given by

hfl (x:D) = h(x:D¥) + hl (x:D"), (15)

where D = (D#,D') represents the entire design variable
vector. This process also indicates that global and local per-
turbations can be implemented concurrently.

2.3 Hierarchical shape variation for complex
surfaces

In this subsection, we implement the hierarchical shape vari-

ation for a complex surface. For a given complex surface S,
its hierarchical shape variation can be expressed as

@ Springer

It should be noted that the perturbation height fields h‘;(x)
and hé(x) discussed in the previous sections were defined
within a planar rectangular domain. Hence, extending the
definition to complex surfaces and constructing the hierar-
chical perturbation height field h? represent a key challenge.
To address this, the embedded perturbation height field
approach is adopted. This method first maps the complex
surface onto a standard parametric domain (rectangular).
Within this domain, the global and local perturbation height
fields hi(x) and hé(x) are defined. The hierarchical perturba-
tion height field is then constructed and embedded back onto
the complex surface.

Due to the surface complexity, parameterizing the com-
plex surface onto the standard parametric domain remains
a challenging task. With advancements in computational
graphics, quasi-conformal and conformal mapping meth-
ods have been developed and widely applied in engineering
(Choi et al. 2020; Guo et al. 2020). In this study, computa-
tional conformal mapping technique (Lui et al. 2013, 2014;
Meng et al. 2016) are employed for surface parameterization.

Computational conformal mapping technique combines
conformal mapping and surface parameterization to map the
surface to a 2D parametric domain while minimizing angular
distortion. The CCM technique has been applied to topol-
ogy optimization (Huo et al. 2022), topography optimization
(Huo et al. 2025), and stiffening optimization (Jiang et al.
2023) for shell structures. As shown in Fig. 5, this method
employs a composite mapping consisting of two quasi-con-
formal maps with appropriate Beltrami coefficients to ensure
conformality and bijectivity. The first quasi-conformal map
uses a disk harmonic mapping, obtained by solving a partial
differential equation. For a simply connected open surface S
in the physical space, a harmonic mapping f; maps S to the
unit disk D(D cC C) (Fig. 5a) and satisfies

Agfy =0,  inS,
{ £,(0S) = oD, 17)

where Ag is the Laplace-Beltrami operator defined
on S. Equation (17) is solved using the finite element
method (Pinkall and Polthier 1993). While f; achieves
surface parameterization, it is generally not confor-
mal. To address angular distortion, a second mapping
/> is constructed using the quasi-conformal reconstruc-
tion method (Lui et al. 2014). Specifically, assuming
HL=x+1iy) =ulx,y)+iv(x,y) : D— M is the second
quasi-conformal mapping from D to the standard rectangu-
lar parameter domain M (Fig. 5b) and the Beltrami coeffi-
cient of the inverse map [ Vis y,-1 = p + i, then the quasi-
conformal mapping f, can be solved through the following
generalized Laplace equation
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SCcR3 DSC YA
e o
"~ f1:S-D ()7
- “x
o« 0
X = (x1’x2’x3)T
DccC YA
v
) Mec
(] fz:D—)M
'\ .
0 Tx
®p=@wy)’
0 u

Fig.5 Schematic illustration of solving the conformal mapping by composing two quasi-conformal mappings. a The first mapping. b The sec-

ond mapping

V- (A(Vw) =0, inD,
V- (A(Vv)=0, inD, (18)
f>(0D) = oM,

where V = (%, a%)’ V(-)is defined as the Euclidean gradient

operator in the parametric domain, while V - (-) represents

a @ .
, with
a a3

The composite

the corresponding divergence operator. A =

_ (p—1)2 412 _ 2t _ (p+1)2 412
o) = pLAEY

%= Tl T 2

1-p? 1-p2—7
conform;l parameterization f(S — M; is then expressed as
f =f>0f,. Using computational conformal mapping tech-
nique, the surface S is mapped onto the parametric domain
M. This enables the definition of the global and local per-

turbation height fields h‘z and hlg and can be expressed as

K ;D) = K (f~ (p):D*) = hy (p:D*), (19)

h(x:D") = KL (F~'@):D') = K., (p:D"), (20)

where hi,(p;Dg) and hfw (p;Dl) are defined on M using the
processes in Figs. 2 and 3, as described by Egs. (2) and (8).
Thus, the hierarchical perturbation height field on the sur-
face can be expressed as

hf(e:D) = ki, (p:D*) + Iy, (p:D'). @1

Although the hierarchical perturbation height field h? on
the surface has been constructed through CCM technique,
a prerequisite for this process is that the initial surface and
the standard parametric domain must be homeomorphic.
Considering that actual shell structures often exhibit more
complex topological forms, the surface cutting operation and
the multi-patch stitching scheme are further introduced to
preprocess complex topological surfaces, thereby enhancing
the applicability of the proposed method.

First, the surface cutting operation is described. For the
cylindrical surface S to be designed, as shown in Fig. 6a, a
cutting operation along the generatrix I" is performed, yield-
ing the intermediate surface S, which is topologically equiv-
alent to a planar rectangle. The mapping f from § to its
corresponding standard parametric domain M can then be
obtained using computational conformal mapping technique
(Fig. 6b, c). The global perturbation height field hg(i;Dg)
and the local perturbation height field hlS (X;Dl) on the inter-
mediate surface S are constructed in accordance with Eqs.
(19) and (20). It is worth noting that the cutting line I" on the
initial surface S splits into two curves, I'; and I, on the
intermediate surface S. This split can result in inconsisten-
cies in the height fields along I". To ensure continuity at the
cutting line, the global and local perturbation height fields
corresponding to I" are processed as follows

@ Springer



199 Page 8of23

C.Liuetal.

(©)

Fig.6 The process of cylindrical shell computational conformal mapping based on the cutting operation

. ) hé(i,Dg)» if x € S\F,
IOPDZ\ L (D) + (D) ) i e T
(22)
I , hg(fc;Dl), ifx e S\T,
s (x:D') = max hg(ipl ;Dl),hé(jrz;DI»’ ifxer.
(23)

Through the surface cutting operation described above, the
proposed method is capable of handling general complex sur-
faces. However, for highly intricate surfaces, such as the one
illustrated in Fig. 7a, a direct mapping may result in numerical

N, g
o £ '

(c)

Fig.7 The multi-patch stitching scheme. a, b The original surface is
divided into two simple patches based on the geometry feature. ¢ The
hierarchical shape perturbation of the entire surface is obtained by

@ Springer

instability. To address this issue, the multi-patch stitching
scheme is introduced. The core concept of this approach is to
decompose the initial complex surface into multiple simpler
patches based on geometric features (Fig. 7b). The perturba-
tion height fields are then defined separately on these simpler
patches to achieve shape modifications (Fig. 7d). Finally, the
patches are assembled (Fig. 7¢) to form the complete analysis
model. For the decomposed simpler patches, the definition of
perturbation height fields requires further refinement. Let
S = J2, S, represent the intermediate surface composed of a
set of patches, where S; denotes the i-th patch, and ns is the
total number of patches. The perturbation height field on each
patch S; can be defined following the procedures outlined ear-
lier. Additionally, the perturbation height field h’; on each

(d)

stitching together all the perturbed patches. d The shape perturbation
of each patch is constructed via the approaches described earlier



Hierarchical shape optimization for complex shell structures considering global and local...

Page90f23 199

patch can be extended to the entire intermediate surface S as
follows

H (.} :
/’L;’H(x;Di) = { hSi (X,D )’ 1fx € Si’
/ 0, if x¢&S,,

where D' denotes the design variable vector corresponding
to the i-th patch and the value O indicates that the pertur-
bation is undefined outside the region S;. The hierarchical
shape perturbation height field hg’ over the entire intermedi-
ate surface § is constructed through extension as

(24)

= max (B3 "

s, H
s, g hg > (25)

ns

At the interfaces between surface patches, the height fields
have been independently defined within each patch. Equa-
tion (25) ensures the coupling of the height fields across
patch interfaces during the optimization process. Ultimately,
by combining computational conformal mapping technique,
the surface cutting operation, and the multi-patch stitching
scheme, hierarchical shape variation for complex surfaces is
achieved.

Furthermore, to ensure the differentiability of the function,
the Kreisselmeier—Steinhauser (K—S) function (Kreisselmeier
and Steinhauser 1980) is introduced to approximate the assem-
bly operators in Egs. (8), (23) and (25). This approximation
is expressed as

¢ =max (', ....¢") » DEZ2 () 26)
where [ is a large positive constant (/ = 100 in this study).
In addition, the Heaviside function we utilized in this study
is expressed as

1, ifx>e,
3 .
H, (x) = %(f - 3%> + %, if |x| <e, 27)
0 otherwise,

where € = 0.6 is the width of numerical approximation. To
avoid the interrupt height variation at the point x = 0, the
specific Heaviside function H* is obtained by the horizontal
movement, i.e. H*(x) = H, .(x — ¢).

3 Optimization formulation and sensitivity
analysis

3.1 Optimization formulation

In this study, a hierarchical shape optimization problem is

formulated to minimize the compliance of shell structures.
The material is assumed to be linearly elastic, isotropic, and

homogeneous. Let S(D) denote the middle surface of the
shell after hierarchical shape perturbation, with S, = S(0)
representing the initial middle surface. The perturbed
shell structure occupies a volumetric domain defined as
Q(D, 1) = S(D) x [~1/2,1/2], where  is the thickness coor-
dinate and 7 is the shell thickness (as illustrated in Fig. 8a).
Under the proposed framework, the hierarchical shape opti-
mization problem is formulated as follows

Find D = (D%,D'),U(x:D) (28a)
Minimize C = CU®D),D) = [o ) FD) - Ux:D))dV (28b)
S.t.

/ (€M e (Ux:D))e,, (V(x:D)) + D ey (Ux:D))e 15(V(x;D)))dV
Q(D.r)

= / (F(D)-V@x:D)dV, YV(x:D)eU,,
QD.1)
(28¢)

Ux:D) € U,D € Up, (28d)

where C represents the structural compliance, and F denotes
the external force applied to the structure. The tensors C*/4#
and D** correspond to the in-plane and out-of-plane consti-
tutive tensors in the curvilinear coordinate system, respec-
tively. The primary displacement U(x;D) belongs to the
prescribed constraint set U, while the virtual displacement
field V(x;D) belongs to the admissible set U,,. These two
displacements both satisfy the Reissner—Mindlin kinematical
assumption. The terms e,;(-) and e,;(-) denote the surface
strain tensor (including membrane and bending behavior)
and the transverse shear strain tensor, respectively (Chapelle
and Bathe 2011). The set U{;, defines the feasible space for
the design variable vector D. For thin shell models, the
transverse shear effect is neglected and will not be discussed
further.

3.2 Analytical sensitivity

In Eq. (28), the integration domain £2(D, t) changes during
the design process, making the proposed hierarchical shape
optimization inherently a boundary evolution problem.
Thus, the shape sensitivity analysis is required to compute
the derivatives of the objective and constraint functions con-
cerning the design variables (Choi and Kim 2004).

To simplify the explanation, let d denote an arbitrary ele-
ment of the design variable vector D, which controls the
shape of the shell structure. Suppose I(W) = /Q( 40 wdav
is a general structural response (where I(W) satisfies the
regularity requirements of the design domain and some
smoothness conditions), and W = W(U(x:d), V(x;d)) is a
functional of U(x;d) and V(x;d). Here, U(x;d) and V(x;d) are
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Fig.8 a Schematic illustration of the relationship of the middle sur-
face with the bulk domain. b The boundary of the bulk domain is
decomposed into three parts. ¢ Representation of the bulk domain in

displacements corresponding to U(x;D) and V(x;D), respec-
tively. According to the Raynold’s transport theorem (Fung
1977), the material derivative of I(W) is

A(W))° = / (WY +div(Wr))dV, (29)
Q(d,1)

where the symbols (-)° = % and (1) = % represent the
material and spatial derivatives, respectively. div(-) is the
divergence operator, and the symbol v is the velocity field
induced by an instant change of the parameter d. By lev-
eraging the Gauss theorem, the second term in Eq. (29) is
reduced to the boundary 002(d, t) as

/ div(Wv)dV = wV,dS, (30)
Q) 0Q(d.1)

where V, = v - N with N representing the outer normal vec-
tor defined on 0€2(d, t), and we have

wV,dS. 31
09(d.1)

IW))° = / W) +
Q.0

With the material derivative defined as in the above
expression, we now proceed to the sensitivity analysis.
We denote the integrand of the left-hand side of Eq. (28¢)
as We = Wo(U(x;d), V(x;d)), which represents the gener-
alized strain energy density. According to Chapelle and
Bathe (2011), taking the spatial derivative of W, we have

(Wc)’ — WC(U’(x;d), V(x;d)) + WC(U(x;d), V’(x;d)),
(32)

@ Springer

(b) (c)

the discrete level, where SZ,S,Z,SZZ represent the intermediate sur-
face S, the upper boundary surface S}, and the lower boundary surface
S, of the discretized shell, respectively

According to Eq. (31), the material derivative of the
left-hand side of Eq. (28c) can be written as

(I(WC))Q = / (WC(U’(x;d), V(x;d)) + WC(U(x;d), V'(x;d)))dV
Qdy1)

+ / WV, dS.
99(d.1)
(33)

Similarly, let W, (U(x;d), V(x;d)) be the integrand of the
right-hand side of Eq. (28c). Here, W, = F(d) - V(x;d).
Then, the material derivative of the right-hand side of
Eq. (28c) can be written as

(1(Wg))" = /.Q(d,t) (WF),dV + /«).Q(d,t) WgV,dS. (34)

Taking the spatial derivative of Wy, we have

, , (35)
=F'(d)- V(x:d) + W (Ux;d), V'(x:d)).
Furthermore, from Eq. (28c), we get
/ We(Usd), V' (x:d))dV
Q(d,r)
(36)
= / Wi (Ux:d), V'(x:d))dV,
Q(d,1)

and
(1(We))” = (1(Wg))" (37

Combining Eqgs. (33—37), we obtain
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/ We(U' (x3d), Vixsd))dV + / W.V,dS
Q(d.t)

092(d,1)

= / F'(d)- V(x;d)dV + / W,.V,dS.
Q1) 08(d.1)

Since U(x;d) = V(x;d) in the concerned compliance
minimization problem (Guo et al. 2014), the compliance
function satisfies

(38)

C= We(Ux;d), U(x:d))dV. (39)
Q1)

Thus, by substituting Egs. (33) and (38—39), the mate-
rial derivative of the objective function C is derived as

€)Y =2 / F'(d)- Ulx:d)dV + / QWy = We)V,dS. (40)
Q. 00(d,1)

It can be observed that the term involving U’ (x;d) has
been eliminated in the final expression, thereby reducing the
computational complexity and cost of solving the sensitivity.
Since load-dependent design problems are not considered in
this study, Eq. (40) can be further simplified as

©)” = / -W¢V,ds. 41)
00(d,t)

3.3 Computation of the velocity field

Thus far, the sensitivity analysis remains incomplete,
since it is still necessary to compute the geometric quan-
tity V, in Eq. (41), where V, = v - N. It is important to
note that V, is only evaluated on 0€2(d, ). Given that
Q(d, 1) = S(d) x [-1/2,1/2| (as shown in Fig. 8a), the
boundary of the volume domain is expressed as

0Q(d,1) = U>_S,, (42)

where S;(i = 1, 2, 3) represent the outer surfaces of the shell
structure (as illustrated in Fig. 8b).

For any point x* = x*(x;d) on the middle surface S(d), its
position is obtained by perturbing the corresponding point
x on the initial middle surface S, such that

x*(x;d) = x + hi (x:d) - N(x,S,), 43)

where N (x, SO) represents the unit normal at point x on the
initial surface S,

Consequently, the positions of points x} on the upper
boundary surface S, and x7 on the lower boundary surface
S, can be expressed as

x;=x"+ LN, S(), (44)

x5 =x* = IN(x*, S(d)), (45)
where N(x*, S(d)) is the normal vector at x* on the perturbed
middle surface S(d).

Next, the velocity field induced by an instant change of
the design variable d is derived, using the upper boundary
surface S, as an example. Substituting Eq. (43) into Eq. (44)
gives

xj(od) =x+ hg(x;d) . N(x, SO) + %N(x*, S(d)). 46)

The velocity field v, of boundary S, is defined as the
material derivative of x} with respect to d, yielding

v, = (x’i‘(x;d))o — ‘)hsd(;;d) -N(x, SO) n %z)N(x;iS(d)). 47)

Similarly, the velocity field v, of boundary S, is expressed
as

_ ohflxd) )

vy = (wd)” = =2 LoV S@) (gg)

2 ad

N(x,8)) -
Since V, = v - N, it follows that

V= NS, )

VZ=v, N(x},5,), (50)

where N (xj, Si) represents the normal vector at x;f of bound-
ary S; and V,i represents the normal velocity field of bound-
ary S;. Given that the thickness of the shell structure is rela-
tively small compared to its in-plane dimensions, the effect
of boundary S; on Eq. (41) is neglected. Since h?(x;d) is
defined using the surface cutting operation and multi-patch
stitching scheme, its spatial derivative with respect to d can
be expressed as

OniGesd)  ontt oy on ohg

od oy on on “od G
i i S

where h’; is the hierarchical perturbation height field defined
on the i-th patch S;, and h;H is expressed using Eq. (24).
Here, S‘i denotes the intermediate surface obtained from the
surface cutting operation on S;, and h? is obtained from the
conformal mapping fx)=p:S5 —>M, as
Hiy. 1\ — hH (-

hsi(x,d) = hMi(p,d).

Benefiting from the perturbation pattern defined in
Eq. (15), the partial derivative of hz‘(p;d) with respect to the
overall design variable vector D can be expressed as

oty 0:D:) _ [‘”’%(’“D ) ol] ¥ [08 "hbi(xi’f)]

oD, oD} oD! 52)

i
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where h! (p:D;)and D, =
perturbation height field and shape design variable vector on
the i-th parameter domain, respectively.

(DS, Df) represent the hierarchical

4 Numerical implementation and design
process

4.1 Discrete sensitivity calculation

In this study, the finite element analysis of the shell structure
is carried out using S3 elements in the commercial soft-
ware Abaqus, which are suitable for both thin and thick shell
structures. The structural response (stress, strain, etc.) is then
extracted to compute the objective function and numerical
sensitivities. In addition, we set five integration points along
the thickness direction of the shell elements and adopt Simp-
son’s rule for numerical integration.

To calculate Eq. (41) numerically, the perturbed surface
S(d) is discretized into a triangular mesh, denoted as

Ul s4@@). (53)

where S (d) represents the e-th shell element (Fig. 8c). The
discretized volume domain is defined as

Su(d) =

2,0 = U, 2@ n=Us, s x [-LE. 64

where £2,(d, t) represents the volume occupied by the e
-th shell element. Thus, the discrete form of Eq. (40) is
expressed as

h
' mesh
h

i generation
h

T N (SRR A TN

where A, represents the area of §¢, and (-)‘13, (-)3 correspond
to the values of the quantity (-) at 9, and S, ), respectively.

4.2 Design process

In this subsection, we briefly summarize the overall hierar-
chical shape optimization workflow, as illustrated in Fig. 9.
First, the unstructured triangular mesh is generated on the
middle surface of the initial shell model (Fig. 9a). For com-
plex shell structures, the surface mesh can be partitioned
into multiple regions based on geometric features (Fig. 7),
and simpler middle surfaces can be obtained through the
surface cutting operation (Fig. 6). The middle surface is then
parameterized using the CCM technique, and a hierarchical
perturbation height field is defined within the parametric
domain (Fig. 9b). This defined height field is subsequently
applied to the initial mesh in Fig. 9a to generate the per-
turbed surface geometry (Fig. 9c). Finally, finite element
analysis and sensitivity analysis are performed, and the
design variables are updated iteratively until convergence
is achieved by repeating the process shown in Fig. 9b—d.

5 Numerical examples

In this section, numerical examples are presented to validate
the effectiveness of the proposed algorithm. Key factors that
may influence the final design are also analyzed in detail.
Unless otherwise specified, all geometric dimensions and
material properties are treated as dimensionless parameters.

e il 1 Fomm s o s 1
: : : e A : :
e [ o )
1 : : . J : :
: 1 1 * 0!
'node e e AN
| ‘ L sensitivity ¥
'perturbation — : L
! T analysis ¥
: AN J
1 1 1 ¥ )
| | | I |
1 ! 1 ry
1 : 1 : N
i o i

Fig. 9 Schematic diagram of the design process
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The material is assumed to be isotropic and linearly elastic,
with Young’s modulus E = 1 and Poisson’s ratio v = 0.3.
The objective of the optimization problem is to minimize
structural compliance (Eq. (28b)). The Method of Moving
Asymptotes (MMA) (Svanberg 1987) is employed as the
optimization solver to update the design variables. The pro-
posed hierarchical shape optimization algorithm involves
two types of design variables, D¢ and D'. The initial set-
tings for each type of design variable are provided within the
respective numerical examples. The optimization process is
terminated at the 300th iteration.

5.1 Hierarchical shape optimization of a plate

To eliminate the influence of the mapping process and the
curved geometry of shell structures, a simple square plate
model is selected as a baseline example. This allows for a
clear and intuitive demonstration of the effectiveness of the
proposed hierarchical shape optimization method. The geo-
metric model is illustrated in Fig. 10, with the plate thick-
ness specified as 0.2. The primary design parameters are as
follows: the global shape is governed by a 6 X 6 NURBS net-
work, where the upper and lower bounds of the perturbation
coefficients at the NURBS control points set to /5, = 10
and hfnin = 0, respectively. The perturbation coefficients
associated with the structural boundary are fixed at zero
to preserve the boundary shape, while the initial values of
the remaining coefficients are set to B = % The local
shape is controlled by a 4 X 4 spline component layout, with
the initial and maximum heights of each component set to
kY = land i;™" = 1, respectively.

Based on the global design parameters, global-level shape
optimization is first conducted. Since the mapping step is
omitted, the global perturbation height field can be directly
defined according to Eq. (2), and global shape variations
are realized via Eq. (1). Figure 11 presents the iteration his-
tory and intermediate results of the global shape optimiza-
tion. The objective function decreases rapidly and converges
efficiently. From the overall structural shape, although the
geometry is modified through normal perturbations at mesh
nodes, a smooth shape is achieved without the need for
additional filtering operations. Next, local shape design is
performed using the local design parameters. As described
in Sect. 2.2, the local perturbation height field can also
be directly constructed. The entire process is depicted in
Fig. 12. Local components move and merge quickly, ulti-
mately forming rich morphological features on the plate sur-
face, which significantly enhance structural performance.
The final structure also exhibits a comparatively smooth
geometric configuration.

Comparing the results in Figs. 11 and 12, it is evident
that global and local shape optimization address shape

Fig. 10 Geometric schematic of the plate structure. The boundary
conditions involve four fixed points, with a concentrated force applied
at the center in the z-direction

design from different perspectives: the former focuses on
the overall structural contour, while the latter emphasizes the
refinement of detail. Although both approaches effectively
improve structural performance, differences in the defini-
tions of design variables and the scales of perturbations ren-
der direct or meaningful comparison inappropriate.

To achieve global shape control and local geometric
refinement simultaneously, we implement the proposed
hierarchical shape optimization method, performing
concurrent optimization at both levels. The hierarchical
optimization process is illustrated in Fig. 13, which dem-
onstrates how the proposed method modifies the global
shape while simultaneously capturing local details through
spline components. The optimization history indicates that
the objective function decreases rapidly and subsequently
stabilizes, with the compliance function reduced from
250,767.60 to 467.98, representing a 99.81% decrease.
This means a 536-fold improvement in structural stiff-
ness. Compared to global or local optimization alone, the
objective value is further reduced. The results in Fig. 14
provide an intuitive visualization of the optimized plate.
Figure 14a—d shows that the hierarchical shape optimiza-
tion method notably expands the design space, enriches
the final design by integrating global and local modifica-
tions, and maintains structural smoothness. Figure 14e—h
reveals that the substantial improvement in stiffness is pri-
marily attributed to the wavy corrugations in the cross-
section, which serve as a key feature of the optimized
design. Additionally, local protrusions near the four fixed
boundaries are found to effectively alleviate out-of-plane
deformation induced by support reactions.

In summary, global-level, local-level, and hierarchical
shape optimizations are applied to the plate model. Com-
pared to single-level optimization approaches, the proposed
hierarchical strategy not only improves overall structural
performance but also enables detailed geometric refinement
in local regions, demonstrating stronger synergistic optimi-
zation capability and greater design flexibility.
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Fig. 11 Iteration histories
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5.2 Hierarchical shape optimization of complex
shells using CCM technique

In this subsection, several surface examples are presented

to evaluate the effectiveness of the proposed algorithm in
optimizing complex shell structures.

@ Springer

5.2.1 Conical shell structure

In this example, a conical shell reconstructed from a 3D
point cloud (obtained via 3D scanning technology) is used
to investigate the impact of different optimization strate-
gies on the final design. The results indicate that, compared
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Fig. 13 Iteration histories and

intermediate results of the
hierarchical shape optimiza-
tion of the plate structure, with
C, = 15671.72, C,, = 1437.62,
Cioo = 686.96,C,, = 497.24,
Cyp = 467.98
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Fig. 14 Different views of the final design. a Front view 1. b Front
view 2. ¢ Back view 1. d Back view 2. e Cross-section at the trans-
verse quarter position. f Cross-section at the transverse half position.

to sequential optimization—where global and local shape
optimizations are conducted independently in a consecutive
manner—the proposed hierarchical shape optimization (con-
current approach) achieves a lower objective function value
and more reasonable design. The geometric dimensions

100

150

200

250

300

Iteration steps

(c) (d)

-v

g

g Cross-section at the transverse three-quarters position. h Cross-sec-
tion along the diagonal position

and boundary conditions of the conical shell are shown in
Fig. 15. The primary design parameters for conical shell
are as follows: the global shape is controlled by a 10 x 10
NURBS network, where the upper and lower bounds of the
perturbation coefficients at the NURBS control points are
set to i, =20 and h¥ =0, respectively. Similarly, the
structural boundary shape is kept fixed, while the initial
values of the remaining perturbation coefficients are set
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B xS .
- The local shape is controlled by a 4 x 4

toh =
spline component layout, with the initial height and maxi-
mum height of each component set to /7 = 4 and ;"™ = 4,
respectively.

Initially, the middle surface of the shell is mapped onto
the parametric domain using the CCM technique, where
a hierarchical perturbation height field is defined to
facilitate the hierarchical shape optimization design with
the iteration history and intermediate results depicted
in Fig. 16. The optimization process converges rapidly,
producing a stable structural design. The final design in
Fig. 16 reveals that local shape components are primar-
ily concentrated around the loading points, enhancing
local stiffness. For comparison, a sequential optimization
strategy is employed. First, a global shape optimization
is performed on the conical shell, and its iteration his-
tory is shown on the left side of Fig. 17. Through global
shape modifications, a substantial increase in stiffness
is observed. Subsequently, local shape optimization is
applied after global shape optimization, as shown on the
right side of Fig. 17. Although the optimization process
converges quickly, its contribution to stiffness improve-
ment is minimal. Additionally, the final design exhibits
discontinuous local protrusions, which may compromise
the overall load transfer efficiency. It is also worth noting
that in this example, the global shape optimization shown
on the left side of Fig. 17 converges relatively slowly, in
sharp contrast to the rapid convergence observed in the
global optimization of the plate model in Fig. 11. This
difference in convergence behavior may be attributed to
the influence of the initial configuration on the explora-
tion of the global shape design space. For global shape

optimization, improvements in structural performance
often rely on large-scale geometric changes. However,
the current example may already possess a relatively
beneficial initial configuration, which could result in
slower convergence during the early stage of iteration.
In contrast, the hierarchical shape optimization strat-
egy introduces fine-tuned local shape adjustments along
with global shape variations, which may facilitate better
exploration of the global design space. In regions with
concentrated loadings, the presence of local geometric
features can effectively enhance local stiffness, leading
to the rapid convergence behavior observed in Fig. 16.
In summary, by comparing the results in Fig. 16 (300
iterations) and Fig. 17 (600 iterations), the proposed hier-
archical shape optimization algorithm demonstrates both
improved efficiency and superior design quality, further
highlighting its effectiveness and computational advantage.

5.2.2 U-shaped shell structure

To verify the effectiveness and generality of the proposed
hierarchical shape optimization method under complex
geometric conditions, a shell structure with a complicated
boundary contour is introduced, as shown in Fig. 18. Mean-
while, to explore the influence of global shape variations on
structural performance, three NURBS networks with vary-
ing resolutions are employed to control the number of global
shape design variables. The primary design parameters for
this example are as follows: the global shape is controlled by
6 x 6,8 X 8 and 12 x 12 NURBS network, respectively. The
upper and lower bounds of the perturbation coefficients at
the NURBS control points are set to hf,,, = 20 and h% . =0,
respectively. Similarly, the structural boundary shape is kept

(a) The 3D point cloud

Fig. 15 Problem settings of the conical shell example. The geometry
model is reconstructed from the 3D point cloud data (a). b The shell
structure (the thickness is set as 3) is fixed at four corners and sub-
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(b) Boundary conditions

jected to five concentrated forces (four at the middle of edges and one
at the center of the surface). The forces are applied along the -z direc-
tion
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Fig. 16 Iteration histories and
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Fig. 17 Iteration histories and intermediate results of the sequential
shape design for the conical shell structure. Before the 300th step,
the iteration process utilizes the global shape design approach to
optimize the structural performance, in which the compliance func-
tion is reduced from 938.92 to 184.06. At the 301st step, local shape
optimization was performed, and the compliance function is ulteriorly
reduced to 164.32

fixed, while the initial values of the remaining perturbation
) - R .
coefficients are set to /' = i The Jocal shape is con-
trolled by a 4 X 6 spline component layout, with the initial
height and maximum height of each component set to ;7 = 2

and A;™ =2, respectively.

100 150 200 250 300
Iteration steps

shell edge load in x-direction

Fig. 18 Schematic geometric illustration of the U-shaped bound-
ary shell structure. The geometric dimensions of the structure are
L, = 200mm, L, = 600mm, L; = L, = 100mm, Ls = 50mm, and
thickness = Imm. In this example, the elastic modulus of the struc-
ture is £ = 70Gpa and the Poisson’s ratio is v = 0.3. The boundary
conditions consist of a fully fixed left edge and a shell edge load of
IN/mm applied along the x-direction at the right edge. Currently, the
structural compliance is 26,868.56

Figure 19a—c shows the initial designs under three dif-
ferent parameter settings. Since the boundary shape is fixed
while the interior region is assigned the initial perturbation
coefficient ', and each design employs a different num-
ber of global shape design variables. This results in the
generation of distinct initial configurations, which exhibit
different initial compliance values. Figure 19d—f further
presents the corresponding final optimized results for each
setting. It can be observed that as the global design resolu-
tion increases, the optimized geometries exhibit more pro-
nounced and complex shape features. A distinct trend can
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be observed, wherein more pronounced wavy undulations
emerge in the structure, thereby enhancing its bending stiff-
ness and reducing the objective function value. However,
upon further comparison of the final objective values for
the three cases, it becomes evident that the rate of improve-
ment diminishes as the NURBS resolution increases. This
observation might suggest that with further expansion of
the NURBS network, the enhancement in structural stiff-
ness tends to reach a state of convergence. In such cases,
it becomes necessary to reasonably select parameter set-
tings to balance structural performance and computational
cost. Moreover, in practical engineering design, the design
space is often constrained by factors such as manufacturing
limitations and cost control. While high-resolution designs
can offer better performance, they may also result in greater
geometric complexity and increased manufacturing cost.
Therefore, comparing the results under varying parameter
settings offers meaningful differences, enabling designers
to make more targeted trade-offs among performance, cost,
and manufacturability, and providing greater flexibility for
addressing diverse engineering demands.

It should be noted that, based on mechanical intuition, the
optimal structure in this example is expected to approach a
flat plate. However, the reason the final structure remains
curved arises from a feature of our shape optimization

Fig. 19 Initial designs, itera-

approach, which is based on perturbations along the normal
direction. Therefore, under the current optimization frame-
work, the geometric transformation is restricted and the
structure unable to fully degenerate into a flat plate.

5.2.3 Nozzle-shaped cylindrical shell structure

This example demonstrates the application of the surface
cutting operation within the hierarchical shape optimization
framework. The selected geometry is similar to the nozzle
section of an engine exhaust system, with its geometric
dimensions and boundary conditions shown in Fig. 20. The
primary design parameters for this example are as follows:
the global shape is controlled by 8 x 8 NURBS network,
where the upper and lower bounds of the perturbation coef-
ficients at the NURBS control points are set to A%, =8
and hfn ., = 0, respectively. Unlike the previous cases, in
this example, only the shape at the fixed end on the left
side is constrained to remain unchanged, i.e., the perturba-
tion coefficients in this region are fixed at zero throughout
the optimization, while the initial values of the remaining
perturbation coefficients are set to W= % The local
shape is controlled by a 6 X 6 spline component layout, with

) : 3500 T
tion curves, and final designs
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networks. a—c Initial designs 3000 -

corresponding to the cases

of global shape network set
as6x6,8x8and 12 x 12,
respectively. The compliance
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1344.22, respectively. d—f The
compliance functions of the
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and 100.21, respectively
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the initial height and maximum height of each component
setto h* = land h"™ = 1, respectively.

To enable parametric mapping, the surface cutting
operation is applied, as illustrated by the cutting lines in
Fig. 21a. This approach facilitates the construction of the
initial hierarchical shape optimization design, depicted in
Fig. 21b. The iteration history and intermediate results are
shown in Fig. 22. During the first five iterations, the local
shape components generated in the initial design quickly
vanish, as seen in Fig. 22a—d. In subsequent iterations,
shape modifications occur exclusively at the global level.
From a mechanical perspective, for a cylindrical shell
subjected to torsion, increasing the cross-sectional radius
is an effective strategy for enhancing torsional stiffness,
provided that thickness and material properties remain
unchanged. Figure 22e, f demonstrates that the shell
cross-section expands as much as possible, optimizing
torsional rigidity. Moreover, the gradually transitioning
toroidal surface near the fixed boundary helps to effec-
tively reduce stress concentration. While previous exam-
ples highlight the advantages of hierarchical shape optimi-
zation in improving structural performance, this example
reveals that under certain boundary conditions, the optimal
configuration may be a completely smooth structure. Dur-
ing optimization, the algorithm rapidly eliminates local
shape components to achieve a smooth configuration. This
observation further validates the adaptability and effec-
tiveness of the hierarchical shape optimization method,

(a) Geometric dimension (b) Boundary conditions

Fig.20 Schematic illustration of the nozzle-shaped cylindrical shell
structure. In this example, the shell thickness is set to 0.4, with
boundary conditions consisting of a fixed constraint at the left end
and a bending moment of 300 applied at the right end. The structural
compliance without any design modifications is 1029.04

Fig.21 The cutting line
diagram of the nozzle-shaped
cylindrical shell structure (the
cutting operation referring to
Fig. 6) and the initial design of
the hierarchical shape optimiza-
tion. The compliance corre-
sponding to the initial design is
962.24

demonstrating its capability to accommodate various
structural design requirements.

5.2.4 Tee-branch pipe shell structure

In this final example, the multi-patch stitching scheme is
utilized. The Tee-branch pipe shell structure, shown in
Fig. 23a, cannot be directly mapped onto a planar domain
due to its geometric complexity. To address this, the struc-
ture is decomposed into simpler surface patches (as illus-
trated in Fig. 23b), allowing for individual parameteriza-
tion of each surface. This enables the implementation of
hierarchical shape optimization through the multi-patch
stitching scheme, as referenced in Fig. 7. In this exam-
ple, identical design parameters are applied to each patch,
with the main design parameters being: the global shape
is controlled by 6 x 6 NURBS network, where the upper
and lower bounds of the perturbation coefficients at the
NURBS control points are set to /f,, = 1and h°. =0,
respectively. Only the shape at each pipe junction is fixed,
i.e., the perturbation coefficients in this region are fixed
at zero, while the initial values of the remaining perturba-
tion coefficients are set to ' = M The local shape
is controlled by a 4 X 4 spline component layout, with the
initial height and maximum height of each component set
to h¥ = 0.1 and 2;"™ = 0.1, respectively.

The initial design is depicted in Fig. 24a, while the
iteration history and intermediate optimization results are
shown in Fig. 24. The results indicate that compliance rap-
idly decreases and stabilizes at a converged value. The final
optimized design reveals that distinct and complex shape
modifications emerge throughout the structure due to the
varying boundary conditions applied to each pipe section.
For cylindrical pipe section II (Fig. 23b), its structural char-
acteristics and boundary conditions closely resemble those
in Sect. 5.2.3. Consequently, the optimized design elimi-
nates local shape modifications, resulting in a smooth con-
figuration. In contrast, for the non-circular pipe sections I
and III, localized shape details develop around the pipes
as the global shape undergoes minor adjustments. These

- W9

(a) The position of the cutting line

(b) Initial design
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Compliance

Fig. 22 Iteration histories and 1200 i
intermediate results of the
hierarchical shape optimization
of the nozzle-shaped cylindrical 1100 F
shell structure. (a)—(h) Rep-
resent the intermediate results
at the 1st, 2nd, 3rd, 5th, 10th, 1000 -
50th, 100th, and 300th iteration
steps, respectively. The compli- o
ance at the 300th step is 471.18 % 9200
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Fig. 23 Schematic illustration of the Tee-branch pipe shell structure. a Boundary condition. The shell thickness is set to 0.1. b The decomposed
simple surfaces and their dimensional parameters. Currently, the structural compliance is 557.18

localized modifications enhance the overall structural stiff-
ness. Although this example features nontrivial structural
characteristics, the application of the multi-patch stitching
scheme further demonstrates the effectiveness of the pro-
posed algorithm in handling complex shell structures.

@ Springer

6 Conclusions

This study proposes a novel shape optimization method
for thin-shell structures, integrating the advantages of
CAD-based and node-based approaches. By leveraging the
moving morphable components method and computational
conformal mapping technique, the proposed method ena-
bles efficient shape optimization of complex shell geom-
etries. The construction of a NURBS-based shape space
allows global shape modifications with a set of control
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Fig. 24 Iteration histories and 600 . . . . .
intermediate results of the Tee-
branch pipe shell structure. a —— Compliance
Initial design (C = 489.46). b
Final design (C = 360.18) 550 | g
3
& 500 1
8
=
g
@) 450 J
400 1
350 1
D 100 150 200 250 300

Iteration steps

(@)

parameters while still being compatible with mesh-based
nodal representation. The embedded shape component
description facilitates the incorporation of local shape var-
iations on general curved surfaces. Additionally, the intro-
duction of the topology description function (TDF) and
enhanced spline-based components enables the method to
capture intricate local geometries accurately.

The hierarchical shape optimization framework allows
for simultaneous global and local shape modifications,
significantly expanding the design space and enhancing
the structural representation. Furthermore, the surface cut-
ting operation and multi-patch stitching scheme extend
the method’s applicability, enabling it to handle a broader
range of complex shell structures. Numerical examples
demonstrate the effectiveness of the proposed algorithm in
improving structural stiffness. By integrating CAD-based
optimization technique with the MMC framework, the

(b)

method achieves rapid convergence with fewer iterations
and reduced design variables.

In the future, the proposed method can be extended to
address other optimization objectives, including natural
frequency maximization, buckling resistance, and stress
minimization. Furthermore, incorporating manufacturing
constraints into the optimization process presents a prom-
ising research direction, particularly for shell structures in
sheet metal forming. Exploring draft angles, symmetry con-
straints, and other manufacturability conditions with shape
optimization could lead to more practical and efficient co-
design results.
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