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Abstract
Shell structures effectively resist external loads due to their characteristic geometric shapes. Shape optimization can further 
enhance the mechanical performance of shell structures while preserving structural topology. This paper proposes a novel 
shape design concept based on the hierarchical shape representation. We use a NURBS network to control the global sur-
face geometry and explicit spline components to capture local geometric features. The hierarchical representation enables 
coordinated control of both global shape and local details using a small number of design variables, thereby reducing the 
computational burden of the optimization problem. During the optimization process, the hierarchical shape variations are 
implemented by applying global and local perturbations to the discrete triangular mesh of the shell surface. By employing the 
computational conformal mapping technique, we obtain the parametric domain of the initial model, in which the hierarchical 
perturbations are constructed. The surface cutting operation and the multi-patch stitching scheme are employed to preproc-
ess the geometry for extension to complex shell structures. Numerical examples are provided to validate the effectiveness, 
efficiency, and generality of the proposed hierarchical shape design method for complex shell structures.

Keywords  Shell structures · Shape optimization · Moving morphable components (MMC) · Computational conformal 
mapping (CCM)

1  Introduction

Shell structures can effectively bear external loads based 
on their geometric shape and have been widely applied in 
both nature and engineering practice (Chapelle and Bathe 

2011). Their superior span-to-thickness ratio and stiffness-
to-weight ratio enable them to play a critical role in various 
fields such as architecture (Rian et al. 2018), shipbuilding 
(Yu et al. 2015), aerospace engineering (Talebitooti and Zar-
astvand 2018), and the automotive industry (Lee et al. 2003). 
Shape optimization of shell structures can enhance structural 
performance by modifying the outer profile while preserv-
ing the structural topology. This approach has significant 
application value in typical thin-walled structures such as 
aircraft skins and pipeline shells, and has attracted extensive 
attention from researchers. From the perspective of imple-
mentation methods, shape optimization of shell structures 
can be broadly categorized into two main types: CAD-based 
methods and node-based methods (Samareh 2001).

CAD-based methods typically describe the middle 
surface of shell structures using spline tools commonly 
employed in geometric modeling, where the design vari-
ables correspond to the geometric parameters defining the 
splines. The development of various spline tools has greatly 
advanced this approach. Surfaces such as Coons surfaces 
(Afonso and Hinton 1995; Falco et al. 2004), Bézier sur-
faces (Wang et al. 2003), B-spline surfaces (Ansola et al. 
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2002a, b; Suarez Espinoza et al. 2012), and NURBS surfaces 
(Espath et al. 2011; Vu Bac et al. 2018) have been employed 
to describe shell shape, enabling both accurate representa-
tion and efficient optimization of shell structures. Compared 
to Coons and Bézier surfaces, B-spline surfaces success-
fully address the issue of local control by introducing knot 
vectors, enabling finer model adjustments. Building on this, 
NURBS (Non-Uniform Rational B-Splines) surfaces (Piegl 
and Tiller 2012) further incorporate weights to rationalize 
the formulation, providing a unified mathematical frame-
work for representing both regular and free-form surfaces, 
thereby significantly enhancing geometric representation 
capabilities. With their high flexibility and degrees of free-
dom, B-spline and NURBS representations have become the 
primary modeling tools in CAD-based shape optimization 
methods for shell structures. CAD-based methods leverage 
the inherent smoothness of spline representations to control 
structural shapes with a relatively small number of design 
variables, resulting in smooth optimized designs. However, 
these methods often suffer from the computational burden 
of remeshing at each iteration. Isogeometric Analysis (IGA, 
Hughes et al. 2005) employs the same basis functions used 
in geometric modeling, allowing the design model and 
analysis model to share a common parameterization. This 
approach effectively reduces the frequent communication 
and remeshing between the design and analysis models, 
thereby significantly improving computational efficiency. 
Combining IGA with shape optimization is highly attractive 
and has been widely applied in structural and fluid dynamic 
shape optimization (Wall et al. 2008; Qian 2010; Nørtoft and 
Gravesen 2013; Park et al. 2013; Wang et al. 2018). In addi-
tion, Kang and Youn (2015, 2016) and Chasapi et al. (2024) 
achieved shape optimization of shell structures with complex 
boundaries or holes by combining IGA with trimmed sur-
face analysis (TSA) techniques, ensuring smooth geometric 
transitions along the trimmed boundaries. However, due to 
the lack of local refinement capability in the tensor-product 
spline spaces underlying isogeometric analysis, traditional 
spline formulations offer limited flexibility in controlling 
geometric details, which may lead to a certain dependence 
of the optimization outcomes on the initial shape. As the 
geometric complexity of shell structures increases, the dif-
ficulty of spline-based parameterization rises significantly, 
thereby limiting the further application of this technique in 
shape optimization of complex surface structures (Hirschler 
et al. 2019).

In contrast, node-based methods (also known as CAD-
free, parameter-free, or grid-based) offer an alternative 
parameterization for shape optimization. These methods are 
constructed directly on the finite element discretized mesh 
of the shell structure, with design variables defined as the 
nodal coordinates or their perturbations, thereby providing 
greater flexibility in the optimization process. Although this 

method provides a large design space, the substantial num-
ber of design variables may reduce the overall optimization 
efficiency. In addition, the optimized shapes can sometimes 
exhibit non-smooth or discontinuous geometries, which 
may pose challenges for direct application in engineering 
practice. Therefore, regularization techniques are commonly 
employed in shape and topology optimization to improve 
the smoothness of the design. Among these, filtering meth-
ods, often referred to as smoothing techniques, are the most 
widely used and can generally be categorized into implicit 
and explicit types. Implicit filtering generates smooth 
designs by solving an elliptic partial differential equation. 
Representative methods include the traction method, also 
known as the H1 gradient method (Azegami and Wu 1996), 
Sobolev smoothing (Jameson and Vassberg 2000), and the 
enhanced traction method (Azegami and Takeuchi 2006). 
The work by Swartz et al. (2023) provides a comprehensive 
overview of implicit filtering techniques, greatly facilitat-
ing researchers’ understanding of these methods. Explicit 
filtering achieves field smoothing through convolution with 
kernel functions. Originally introduced to address the check-
erboard issue in topology optimization (Sigmund 1994), it 
has also been found effective in shape optimization (Le et al. 
2011). Hojjat et al. (2014) and Bletzinger (2014) proposed 
the vertex-morphing method, demonstrating the application 
of explicit filtering techniques in shell shape optimization. 
In recent research, Schmölz et al. (2025) introduced a simul-
taneous optimization strategy for shell shape and thickness 
based on the vertex-morphing method. They conducted a 
comprehensive and detailed comparison with the approach 
proposed by Träff (2023), verifying the impact of the choice 
of filtering technique (implicit or explicit) on the results of 
combined optimization. Radtke et al. (2023) conducted an 
in-depth analysis of both explicit and implicit filtering tech-
niques. Najian Asl and Bletzinger (2023) investigated convo-
lution-based (explicit) and PDE-based (implicit) shape filter-
ing methods, and introduced an implicit volumetric filtering 
approach that simultaneously controls boundary smoothness 
and preserves internal mesh quality during shape optimiza-
tion. Although the application of various filtering techniques 
effectively improves the smoothness of optimization results, 
the additional operations introduced inevitably increase the 
computational time. Therefore, finding a balance between 
high flexibility and computational efficiency has become 
one of the key research focuses in the development of this 
method.

Overall, the two main existing shape parameterization 
methods each have their own advantages. To combine the 
strengths of both shape optimization approaches, this study 
proposes a novel shape parameterization method based 
on spline models from CAD-based methods and discrete 
meshes from node-based methods, enabling effective global 
shape representation. The method describes the shell middle 
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surface using the discrete triangular mesh and constructs a 
standardized parametric domain for the shape description 
through geometric preprocessing. A global shape network 
is built in the parametric domain using NURBS, and shell 
geometry variations are achieved by computing a perturba-
tion height field applied to the discretized middle surface. 
In the proposed approach, variations of the shell middle 
surface shape are realized through normal perturbations of 
mesh nodes, while the design variables correspond to per-
turbation coefficients at the NURBS network control points. 
This parameterization method thus combines the advantages 
of CAD-based methods (few design variables and no need 
for filtering) with the geometric flexibility characteristic of 
node-based methods. In addition, we incorporate computa-
tional conformal mapping technique (Lui et al. 2013, 2014; 
Meng et al. 2016) as part of the geometric preprocessing to 
achieve a unified parameterization of the shell surface. By 
integrating the principles of computational conformal map-
ping (CCM) technique with the framework of the moving 
morphable components (MMC) method (Guo et al. 2014; 
Zhang et al. 2016), Huo et al. (2025) employed embedded 
spline components to optimize the surface topography of 
complex shell structures and investigated the influence of 
local shape variations on structural performance. Their 
study demonstrated that rich topographical adjustments on 
the shell surface can significantly enhance structural perfor-
mance. However, in their approach, the global geometry of 
the structure remains fixed, and the optimization is limited 
to local shape modifications. To further explore the com-
bined effects of global shape and local geometric details on 
structural performance, this study introduces local spline 
components into the proposed global shape optimization 
framework. This allows for simultaneous optimization of 
local features while the global geometry evolves, enabling a 
hierarchical shape optimization strategy that fully leverages 
the impact of shape variation on the mechanical performance 
of shell structures.

In the proposed method, the global and local shape opti-
mizations of the shell structure are performed concurrently, 
with both types of design variables incorporated into a uni-
fied vector and updated simultaneously. The advantages of 
the proposed approach can be summarized as follows: First, 
the shell geometry is modeled using a mesh-based repre-
sentation, which enhances adaptability to complex shapes. 
Shape modifications are realized by applying both global 
perturbations defined via NURBS and local perturbations 
described by embedded components directly to the mesh 
nodes, thereby eliminating the need for remeshing during 
the optimization process. Moreover, the use of local spline 
components within the MMC framework, together with the 
NURBS-based global shape network, significantly reduces 
the number of design variables, resulting in lower computa-
tional cost for the optimization problem.

The remainder of the article is organized as follows: 
Sect. 2 introduces the approach for realizing shape changes. 
In Sect. 3, the optimization problem is formulated with stiff-
ness maximization as the objective function, accompanied 
by a detailed sensitivity analysis. Section 4 addresses key 
technical considerations relevant to the proposed approach 
and summarizes the overall design process. In Sect. 5, sev-
eral representative numerical examples are presented to vali-
date the effectiveness of the proposed method. Finally, the 
conclusions and future research directions are summarized 
in Sect. 6.

2 � Shape description

This section outlines the implementation process of hierar-
chical shape description. For a shell structure to be designed, 
the middle surface of the shell is employed for structural 
modeling and its shape variations are realized through per-
turbations of the middle surface. We take the plane of a plate 
shell structure as an example to describe both the global 
and local perturbations, from which a hierarchical perturba-
tion field is formulated. Subsequently, shape variations of 
complex surfaces are achieved by applying the hierarchical 
perturbations.

2.1 � Global shape perturbation description

Taking the rectangular plane S shown in Fig. 1 as an exam-
ple, a point x = (u, v) on the plane is perturbed along the 
unit normal vector N(x) to a new position x∗(x) expressed as

where hg
S
(x) represents the global perturbation height field 

at point x . Since the proposed method is designed for dis-
crete mesh models, N(x) is defined using discrete differential 
geometry (Taubin 1995). Inspired by CAD-based methods, 
Non-Uniform Rational B-Splines (Piegl and Tiller 2012) are 
introduced to construct the global shape network, thereby 
enabling the description of global shape perturbations. As 
shown in Fig. 2, the global perturbation height field hg

S
(x) at 

point x is defined as

where Ni,p and Nj,q are basis functions in the u and v-direc-
tions, respectively. The parameters n and m denote the num-
ber of basis functions (corresponding to an n × m global 
shape network), and p and q represent the degrees of the 
basis functions ( p = q = 2 in this study). The symbol hij 
represents the perturbation coefficient at the NURBS control 

(1)x∗(x) = x + h
g

S
(x) ⋅ N(x),

(2)h
g

S
(x) =

∑n

i=0

∑m

j=0
Ni,p(u)Nj,q(v)�ijhij∑n

i=0

∑m

j=0
Ni,p(u)Nj,q(v)�ij

,
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points, while �ij denotes the corresponding control point 
weights (set to �ij = 1 in this study). The basis function 
Ni,p(u) (and similarly Nj,q(v) ) is calculated using the Cox-
De Boor recursive formula (De Boor 1972)

where ui denotes the i-th knot in the u-direction knot vector. 
The knot vectors in the u and v-directions are defined as

By introducing the NURBS-based shape network, global 
perturbations of the height field are achieved. The corre-
sponding perturbation coefficients are used as design vari-
ables, denoted as Dg =

(
h00,… hij,… hnm

)
.

(3)
Ni,0(u) =

{
1, if ui ≤ u ≤ ui+1
0, otherwise,

Ni,p(u) =
u − ui

ui+p − ui
Ni,p−1(u) +

ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p−1(u),

(4)U =
{
u1, u2,… , un+p+1

}
,

(5)V =
{
v1, v2,… , vm+q+1

}
.

2.2 � Local shape perturbation description

In Eq.  (1), the global shape variation of the plane S is 
achieved by defining a global perturbation height field hg

S
(x) . 

Similarly, in this subsection, we introduce the spline-based 
shape components developed in Huo et al. (2025) to define 
local shape perturbation height fields hl

S
(x) for realizing 

localized shape variations. This approach is inspired by the 
concept of moving morphable components (Guo et al. 2014; 
Zhang et al. 2016) in explicit topology optimization frame-
works, enabling an explicit representation of local shapes. 
As a result, the proposed method benefits from a reduced 
number of design variables, smooth and well-defined struc-
tural boundaries, and improved interpretability of the final 
designs. Specifically, the topology description function 
(TDF) is introduced to represent regions subjected to local 
shape perturbations. For the i-th local shape component on 
the rectangular plane S (Fig. 3a), its TDF is expressed as

(6)

⎧⎪⎨⎪⎩

𝜙i(u, 𝜈) > 0, if (u, 𝜈) ∈ Si,

𝜙i(u, 𝜈) = 0, if (u, 𝜈) ∈ 𝜕Si,

𝜙i(u, 𝜈) < 0, if (u, 𝜈) ∈ S�
�
Si ∪ 𝜕Si

�
,

Fig. 1   Shape changes are achieved by perturbing the point on the surface. The perturbation direction follows the normal vector at each point of 
the initial surface

Fig. 2   Description of the global shape perturbation. Each point x on the initial surface S corresponds to a height value on the NURBS surface, 
which is regarded as the global perturbation height field hg

S
(x)
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where Si represents the region occupied by the i-th local 
shape component, and �Si denotes its boundary. However, 
the TDF in Fig. 3a only indicates the region requiring local 
perturbation without reflecting the perturbation height field 
hl
S
 . To address this, a height parameter is introduced to define 

the perturbation height field (Fig. 3b), which is expressed for 
the i-th component as

where h∗
i
 is the design variable, representing the height of 

the i-th local shape component, and H(⋅) is the regularized 
Heaviside function that maps values to the interval [0, 1] . 
After determining hl

i
 for each local component, the local per-

turbation height field for the entire plane S can be expressed 
as (Fig. 3c, d)

(7)hl
i
(u, v) = h∗

i
⋅ H

(
�i(u, v)

)
,

(8)hl
S
= max

(
hl
1
, hl

2
,… hl

3
,… , hl

nc

)
,

where nc is the number of local shape components in the 
design domain.

Next, the expression for the TDF �i(u, �) is formulated. 
To describe more intricate local shape changes, this study 
employs spline-based components to represent local shapes. 
To achieve this, the spline-based TDF �i(u, �) is defined as 
shown in Fig. 4. First, a local coordinate system 

(
u′, v′

)
 is 

established as

where ui
0
 and vi

0
 are the local coordinates of the i-th com-

ponent’s center, and �i is its rotation angle relative to the 
global Cartesian coordinate system. Parameters ( ui

0
, vi

0
, �i ) 

allow for rigid translation and rotation of the component. 
Next, the Cartesian coordinates are transformed into polar 
coordinates (r,�)

(9)
(
u�

v�

)
=

[
cos�i sin�i
−sin�i cos�i

](
u − ui

0

v − vi
0

)
,

Fig. 3   Schematic illustration of 
local shape perturbation height 
field construction. a The TDF �i 
indicates the local shape pertur-
bation domain. b Introduce the 
height variable h∗

i
 to represent 

the height field corresponding to 
the local perturbation domain. 
c, d represent the assembly 
process of multiple local shape 
components, forming the final 
local perturbation height field 
hl
S
 , i.e. Eq. (8)

Fig. 4   Schematic illustration of 
a local spline component with 
nr = 8
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The boundary of the i-th spline-based component is then 
expressed in terms of a radial basis function as

where tk
i
 represents the k-th shape control coefficient of the 

i-th component ( t0
i
= tk

i
 ensures a closed boundary), and 

Rk,p(�) is a NURBS radial basis function of degree p ( p = 2 
in this study). The NURBS radial basis function is defined as

where wk is the weight associated with the k-th basis func-
tion ( wk = 1 in this study), and Nk,p is the k-th B-spline basis 
function defined using the Cox-De Boor recursive formula 
Eq. (3). Finally, the TDF �i(u, v) is expressed as

where q is the shape index ( q = 2 in this study) and 
eps = 10−15 is a small value to prevent singularities. Benefits 
from the flexibility of NURBS-based modeling, complex 
local perturbation regions can be effectively represented. 
The design variable vector for the i-th spline-based com-
ponent is expressed as Di =

(
ui
0
, vi

0
, �i, t

1
i
, t2
i
,… , tnr

i
, h∗

i

)
 . 

The design variables of all local shape components are then 
assembled as Dl =

(
D1,… ,Di,… ,Dnc

)
.

Up to this point, the global and local perturbations on the 
plane S have been defined separately. The global perturbation 
height field hg

S
(x) is controlled by the design variable vector 

Dg , while the local perturbation height field hl
S
(x) is governed 

by Dl , with Dg and Dl being independent of each other. The 
hierarchical perturbation expression for the plane S is given by

where D =
(
Dg,Dl

)
 represents the entire design variable 

vector. This process also indicates that global and local per-
turbations can be implemented concurrently.

2.3 � Hierarchical shape variation for complex 
surfaces

In this subsection, we implement the hierarchical shape vari-
ation for a complex surface. For a given complex surface S , 
its hierarchical shape variation can be expressed as

(10)r =

√
(u�)2 + (v�)2,

(11)� = arctan

(
v�

u�

)
.

(12)r̃i(𝜑) =
nr∑
k=0

Rk,p(𝜑)t
k
i
,

(13)Rk,p(�) =
Nk,p(�)wk∑nr

l=0
Nl,p(�)wl

,

(14)𝜙i(u, v) = 1 −
(

r

r̃i(𝜑)+eps

)q

,

(15)hH
S
(x;D) = h

g

S
(x;Dg) + hl

S

(
x;Dl

)
,

It should be noted that the perturbation height fields hg
S
(x) 

and hl
S
(x) discussed in the previous sections were defined 

within a planar rectangular domain. Hence, extending the 
definition to complex surfaces and constructing the hierar-
chical perturbation height field hH

S
 represent a key challenge. 

To address this, the embedded perturbation height field 
approach is adopted. This method first maps the complex 
surface onto a standard parametric domain (rectangular). 
Within this domain, the global and local perturbation height 
fields hg

S
(x) and hl

S
(x) are defined. The hierarchical perturba-

tion height field is then constructed and embedded back onto 
the complex surface.

Due to the surface complexity, parameterizing the com-
plex surface onto the standard parametric domain remains 
a challenging task. With advancements in computational 
graphics, quasi-conformal and conformal mapping meth-
ods have been developed and widely applied in engineering 
(Choi et al. 2020; Guo et al. 2020). In this study, computa-
tional conformal mapping technique (Lui et al. 2013, 2014; 
Meng et al. 2016) are employed for surface parameterization.

Computational conformal mapping technique combines 
conformal mapping and surface parameterization to map the 
surface to a 2D parametric domain while minimizing angular 
distortion. The CCM technique has been applied to topol-
ogy optimization (Huo et al. 2022), topography optimization 
(Huo et al. 2025), and stiffening optimization (Jiang et al. 
2023) for shell structures. As shown in Fig. 5, this method 
employs a composite mapping consisting of two quasi-con-
formal maps with appropriate Beltrami coefficients to ensure 
conformality and bijectivity. The first quasi-conformal map 
uses a disk harmonic mapping, obtained by solving a partial 
differential equation. For a simply connected open surface S 
in the physical space, a harmonic mapping f1 maps S to the 
unit disk D(D ⊂ ℂ ) (Fig. 5a) and satisfies

where ΔS is the Laplace–Beltrami operator defined 
on S . Equation  (17) is solved using the finite element 
method (Pinkall and Polthier 1993). While f1 achieves 
surface parameterization, it is generally not confor-
mal. To address angular distortion, a second mapping 
f2 is constructed using the quasi-conformal reconstruc-
tion method (Lui et  al. 2014). Specifically, assuming 
f2(z = x + iy) = u(x, y) + iv(x, y) ∶ D → M  is the second 
quasi-conformal mapping from D to the standard rectangu-
lar parameter domain M (Fig. 5b) and the Beltrami coeffi-
cient of the inverse map f −1

1
 is �h−1 = � + i� , then the quasi-

conformal mapping f2 can be solved through the following 
generalized Laplace equation

(16)x∗(x) = x + hH
S
(x;D) ⋅ N(x).

(17)

{
ΔSf1 = 0, in S,

f1(�S) = �D,
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where ∇ =
(

�

�x
,
�

�y

)
 , ∇(⋅) is defined as the Euclidean gradient 

operator in the parametric domain, while ∇ ⋅ (⋅) represents 

the corresponding divergence operator. � =

(
�1 �2
�2 �3

)
 , with 

�1 =
(�−1)2+�2

1−�2−�2
 , �2 = −

2�

1−�2−�2
 , �3 =

(�+1)2+�2

1−�2−�2
 . The composite 

conformal parameterization f (S → M) is then expressed as 
f = f2◦f1 . Using computational conformal mapping tech-
nique, the surface S is mapped onto the parametric domain 
M . This enables the definition of the global and local per-
turbation height fields hg

S
 and hl

S
 and can be expressed as

where hg
M
(p;Dg) and hl

M

(
p;Dl

)
 are defined on M using the 

processes in Figs. 2 and 3, as described by Eqs. (2) and (8). 
Thus, the hierarchical perturbation height field on the sur-
face can be expressed as

(18)

⎧⎪⎨⎪⎩

∇ ⋅ (�(∇u)) = 0, in D,

∇ ⋅ (�(∇v)) = 0, in D,

f2(�D) = �M,

(19)h
g

S
(x;Dg) = h

g

S

(
f −1(p);Dg

)
= h

g

M
(p;Dg),

(20)hl
S

(
x;Dl

)
= hl

S

(
f −1(p);Dl

)
= hl

M

(
p;Dl

)
,

(21)hH
S
(x;D) = h

g

M
(p;Dg) + hl

M

(
p;Dl

)
.

Although the hierarchical perturbation height field hH
S

 on 
the surface has been constructed through CCM technique, 
a prerequisite for this process is that the initial surface and 
the standard parametric domain must be homeomorphic. 
Considering that actual shell structures often exhibit more 
complex topological forms, the surface cutting operation and 
the multi-patch stitching scheme are further introduced to 
preprocess complex topological surfaces, thereby enhancing 
the applicability of the proposed method.

First, the surface cutting operation is described. For the 
cylindrical surface S to be designed, as shown in Fig. 6a, a 
cutting operation along the generatrix �  is performed, yield-
ing the intermediate surface S̃ , which is topologically equiv-
alent to a planar rectangle. The mapping f  from S̃ to its 
corresponding standard parametric domain M can then be 
obtained using computational conformal mapping technique 
(Fig. 6b, c). The global perturbation height field hg

S̃
(x̃;Dg) 

and the local perturbation height field hl
S̃

(
x̃;Dl

)
 on the inter-

mediate surface S̃ are constructed in accordance with Eqs. 
(19) and (20). It is worth noting that the cutting line �  on the 
initial surface S splits into two curves, �1 and �2 , on the 
intermediate surface S̃ . This split can result in inconsisten-
cies in the height fields along �  . To ensure continuity at the 
cutting line, the global and local perturbation height fields 
corresponding to �  are processed as follows

Fig. 5   Schematic illustration of solving the conformal mapping by composing two quasi-conformal mappings. a The first mapping. b The sec-
ond mapping
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Through the surface cutting operation described above, the 
proposed method is capable of handling general complex sur-
faces. However, for highly intricate surfaces, such as the one 
illustrated in Fig. 7a, a direct mapping may result in numerical 

(22)

h
g

S
(x;Dg) =

{
h
g

S̃
(x̃;Dg), if x ∈ S�𝛤 ,

1

2
⋅

(
h
g

S̃

(
x̃𝛤1

;Dg
)
+ h

g

S̃

(
x̃𝛤2

;Dg
))

, if x ∈ 𝛤 .

(23)

hl
S

(
x;Dl

)
=

{
hl
S̃

(
x̃;Dl

)
, if x ∈ S�𝛤 ,

max
(
hl
S̃

(
x̃𝛤1

;Dl
)
, h1

S̃

(
x̃𝛤2

;Dl
))

, if x ∈ 𝛤 .

instability. To address this issue, the multi-patch stitching 
scheme is introduced. The core concept of this approach is to 
decompose the initial complex surface into multiple simpler 
patches based on geometric features (Fig. 7b). The perturba-
tion height fields are then defined separately on these simpler 
patches to achieve shape modifications (Fig. 7d). Finally, the 
patches are assembled (Fig. 7c) to form the complete analysis 
model. For the decomposed simpler patches, the definition of 
perturbation height fields requires further refinement. Let 
S =

⋃ns

i=1
Si represent the intermediate surface composed of a 

set of patches, where Si denotes the i-th patch, and ns is the 
total number of patches. The perturbation height field on each 
patch Si can be defined following the procedures outlined ear-
lier. Additionally, the perturbation height field hH

Si
 on each 

Fig. 6   The process of cylindrical shell computational conformal mapping based on the cutting operation

Fig. 7   The multi-patch stitching scheme. a, b The original surface is 
divided into two simple patches based on the geometry feature. c The 
hierarchical shape perturbation of the entire surface is obtained by 

stitching together all the perturbed patches. d The shape perturbation 
of each patch is constructed via the approaches described earlier
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patch can be extended to the entire intermediate surface S as 
follows

where Di denotes the design variable vector corresponding 
to the i-th patch and the value 0 indicates that the pertur-
bation is undefined outside the region Si . The hierarchical 
shape perturbation height field hH

S
 over the entire intermedi-

ate surface S is constructed through extension as

At the interfaces between surface patches, the height fields 
have been independently defined within each patch. Equa-
tion (25) ensures the coupling of the height fields across 
patch interfaces during the optimization process. Ultimately, 
by combining computational conformal mapping technique, 
the surface cutting operation, and the multi-patch stitching 
scheme, hierarchical shape variation for complex surfaces is 
achieved.

Furthermore, to ensure the differentiability of the function, 
the Kreisselmeier–Steinhauser (K–S) function (Kreisselmeier 
and Steinhauser 1980) is introduced to approximate the assem-
bly operators in Eqs. (8), (23) and (25). This approximation 
is expressed as

where l is a large positive constant ( l = 100 in this study). 
In addition, the Heaviside function we utilized in this study 
is expressed as

where � = 0.6 is the width of numerical approximation. To 
avoid the interrupt height variation at the point x = 0 , the 
specific Heaviside function H∗ is obtained by the horizontal 
movement, i.e. H∗(x) = H�,�(x − �).

3 � Optimization formulation and sensitivity 
analysis

3.1 � Optimization formulation

In this study, a hierarchical shape optimization problem is 
formulated to minimize the compliance of shell structures. 
The material is assumed to be linearly elastic, isotropic, and 

(24)h
s,H

Si

(
x;Di

)
=

{
hH
Si

(
x;Di

)
, if x ∈ Si,

0, if x ∉ Si,

(25)hH
S
= max

(
h
s,H

S1
, h

s,H

S2
,… , h

s,H

Sns

)
.

(26)� = max
�
�1,… , �n

�
≈

ln (
∑n

i=1
exp(l� i))
l

,

(27)H𝛼,𝜖(x) =

⎧⎪⎨⎪⎩

1, if x > 𝜖,
3

4

�
x

𝜖
−

x3

3𝜖3

�
+

1+𝜖

2
, if �x� ≤ 𝜖,

0, otherwise,

homogeneous. Let S(D) denote the middle surface of the 
shell after hierarchical shape perturbation, with S0 = S(0) 
representing the initial middle surface. The perturbed 
shell structure occupies a volumetric domain defined as 
�(D, t) = S(D) ×

[
−t∕2, t∕2

]
 , where t is the thickness coor-

dinate and t is the shell thickness (as illustrated in Fig. 8a). 
Under the proposed framework, the hierarchical shape opti-
mization problem is formulated as follows

S.t.

where C represents the structural compliance, and F denotes 
the external force applied to the structure. The tensors C���� 
and D�� correspond to the in-plane and out-of-plane consti-
tutive tensors in the curvilinear coordinate system, respec-
tively. The primary displacement U(x;D) belongs to the 
prescribed constraint set U , while the virtual displacement 
field V(x;D) belongs to the admissible set Uad . These two 
displacements both satisfy the Reissner–Mindlin kinematical 
assumption. The terms e��(⋅) and e�3(⋅) denote the surface 
strain tensor (including membrane and bending behavior) 
and the transverse shear strain tensor, respectively (Chapelle 
and Bathe 2011). The set UD defines the feasible space for 
the design variable vector D . For thin shell models, the 
transverse shear effect is neglected and will not be discussed 
further.

3.2 � Analytical sensitivity

In Eq. (28), the integration domain �(D, t) changes during 
the design process, making the proposed hierarchical shape 
optimization inherently a boundary evolution problem. 
Thus, the shape sensitivity analysis is required to compute 
the derivatives of the objective and constraint functions con-
cerning the design variables (Choi and Kim 2004).

To simplify the explanation, let d denote an arbitrary ele-
ment of the design variable vector D , which controls the 
shape of the shell structure. Suppose I(W) = ∫

�(d,t)
WdV 

is a general structural response (where I(W) satisfies the 
regularity requirements of the design domain and some 
smoothness conditions), and W = W(U(x;d),V(x;d)) is a 
functional of U(x;d) and V(x;d) . Here, U(x;d) and V(x;d) are 

(28a)Find D =
(
Dg,Dl

)
,U(x;D)

(28b)Minimize C = C(U(x;D),D) = ∫
�(D,t)

(F(D) ⋅ U(x;D))dV

(28c)

�
�(D,t)

(����e�� (U(x;D))e��(V(x;D)) +��e�3(U(x;D))e�3(V(x;D))
)
dV

= �
�(D,t)

(F(D) ⋅ V(x;D))dV, ∀V(x;D) ∈ Uad ,

(28d)U(x;D) ∈ U,D ∈ UD,
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displacements corresponding to U(x;D) and V(x;D) , respec-
tively. According to the Raynold’s transport theorem (Fung 
1977), the material derivative of I(W) is

where the symbols (⋅)◦ = D(⋅)

Dd
 and (⋅)� = �(⋅)

�d
 represent the 

material and spatial derivatives, respectively. div(⋅) is the 
divergence operator, and the symbol v is the velocity field 
induced by an instant change of the parameter d . By lev-
eraging the Gauss theorem, the second term in Eq. (29) is 
reduced to the boundary ��(d, t) as

where Vn = v ⋅ N with N representing the outer normal vec-
tor defined on ��(d, t) , and we have

With the material derivative defined as in the above 
expression, we now proceed to the sensitivity analysis. 
We denote the integrand of the left-hand side of Eq. (28c) 
as WC = WC(U(x;d),V(x;d)) , which represents the gener-
alized strain energy density. According to Chapelle and 
Bathe (2011), taking the spatial derivative of WC , we have

(29)(I(W))◦ = ∫
�(d,t)

(
(W)� + div(Wv)

)
dV,

(30)∫
�(d,t)

div(Wv)dV = ∫
��(d,t)

WVndS,

(31)(I(W))◦ = ∫
�(d,t)

(W)� + ∫
��(d,t)

WVndS.

(32)

(
WC

)�
= WC

(
U�(x;d),V(x;d)

)
+WC

(
U(x;d),V�(x;d)

)
.

According to Eq. (31), the material derivative of the 
left-hand side of Eq. (28c) can be written as

Similarly, let WF(U(x;d),V(x;d)) be the integrand of the 
right-hand side of Eq.  (28c). Here, WF = F(d) ⋅ V(x;d) . 
Then, the material derivative of the right-hand side of 
Eq. (28c) can be written as

Taking the spatial derivative of WF , we have

Furthermore, from Eq. (28c), we get

and

Combining Eqs. (33‒37), we obtain

(33)

(
I
(
WC

))
◦

= ∫
�(d,t)

(
WC

(
U�(x;d),V(x;d)

)
+WC

(
U(x;d),V�(x;d)

))
dV

+ ∫
��(d,t)

WCVndS.

(34)
(
I
(
WF

))
◦

= ∫
�(d,t)

(
WF

)�
dV + ∫

��(d,t)
WFVndS.

(35)
(
WF

)�
= F�(d) ⋅ V(x;d) + F(d) ⋅ V�(x;d)

= F�(d) ⋅ V(x;d) +WF

(
U(x;d),V�(x;d)

)
.

(36)
∫
�(d,t)

WC

(
U(x;d),V�(x;d)

)
dV

= ∫
�(d,t)

WF

(
U(x;d),V�(x;d)

)
dV,

(37)
(
I
(
W

C

))
◦

=

(
I
(
W

F

))
◦

.

Fig. 8   a Schematic illustration of the relationship of the middle sur-
face with the bulk domain. b The boundary of the bulk domain is 
decomposed into three parts. c Representation of the bulk domain in 

the discrete level, where Se
�
, S1

e
�
, S2

e
�
 represent the intermediate sur-

face S , the upper boundary surface S1 , and the lower boundary surface 
S2 of the discretized shell, respectively
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Since U(x;d) = V(x;d) in the concerned compliance 
minimization problem (Guo et al. 2014), the compliance 
function satisfies

Thus, by substituting Eqs. (33) and (38‒39), the mate-
rial derivative of the objective function C is derived as

It can be observed that the term involving U�(x;d) has 
been eliminated in the final expression, thereby reducing the 
computational complexity and cost of solving the sensitivity. 
Since load-dependent design problems are not considered in 
this study, Eq. (40) can be further simplified as

3.3 � Computation of the velocity field

Thus far, the sensitivity analysis remains incomplete, 
since it is still necessary to compute the geometric quan-
tity Vn in Eq. (41), where Vn = � ⋅ N . It is important to 
note that Vn is only evaluated on ��(d, t) . Given that 
�(d, t) = S(d) ×

[
−t∕2, t∕2

]
 (as shown in Fig.  8a), the 

boundary of the volume domain is expressed as

where Si(i = 1, 2, 3) represent the outer surfaces of the shell 
structure (as illustrated in Fig. 8b).

For any point x∗ = x∗(x;d) on the middle surface S(d) , its 
position is obtained by perturbing the corresponding point 
x on the initial middle surface S0 , such that

where N
(
x, S0

)
 represents the unit normal at point x on the 

initial surface S0.
Consequently, the positions of points x∗

1
 on the upper 

boundary surface S1 and x∗
2
 on the lower boundary surface 

S2 can be expressed as

(38)
∫
�(d,t)

WC

(
U�(x;d),V(x;d)

)
dV + ∫

��(d,t)

WCVndS

= ∫
�(d,t)

F�(d) ⋅ V(x;d)dV + ∫
��(d,t)

WFVndS.

(39)C = ∫
�(d,t)

WC(U(x;d),U(x;d))dV.

(40)(C)◦ = 2∫
�(d,t)

F
�(d) ⋅ U(x;d)dV + ∫

��(d,t)

(2WF −WC)VndS.

(41)(C)◦ = ∫
��(d,t)

−WCVndS.

(42)��(d, t) = ∪3
i=1

Si,

(43)x∗(x;d) = x + hH
S
(x;d) ⋅ N

(
x, S0

)
,

(44)x∗
1
= x∗ +

t

2
N(x∗, S(d)),

where N(x∗, S(d)) is the normal vector at x∗ on the perturbed 
middle surface S(d).

Next, the velocity field induced by an instant change of 
the design variable d is derived, using the upper boundary 
surface S1 as an example. Substituting Eq. (43) into Eq. (44) 
gives

The velocity field �1 of boundary S1 is defined as the 
material derivative of x∗

1
 with respect to d , yielding

Similarly, the velocity field �2 of boundary S2 is expressed 
as

Since Vn = � ⋅ N , it follows that

where N
(
x∗
i
, Si

)
 represents the normal vector at x∗

i
 of bound-

ary Si and Vi
n
 represents the normal velocity field of bound-

ary Si . Given that the thickness of the shell structure is rela-
tively small compared to its in-plane dimensions, the effect 
of boundary S3 on Eq. (41) is neglected. Since hH

S
(x;d) is 

defined using the surface cutting operation and multi-patch 
stitching scheme, its spatial derivative with respect to d can 
be expressed as

where hH
Si

 is the hierarchical perturbation height field defined 
on the i-th patch Si , and hs,H

Si
 is expressed using Eq. (24). 

Here, S̃i denotes the intermediate surface obtained from the 
surface cutting operation on Si , and hH

S̃i
 is obtained from the 

c o n f o r m a l  m a p p i n g  fi(x) = p ∶ S̃i → Mi  a s 
hH
S̃i
(x;d) = hH

Mi
(p;d).

Benefiting from the perturbation pattern defined in 
Eq. (15), the partial derivative of hH

Mi
(p;d) with respect to the 

overall design variable vector D can be expressed as

(45)x∗
2
= x∗ −

t

2
N(x∗, S(d)),

(46)x∗
1
(x;d) = x + hH

S
(x;d) ⋅ N

(
x, S0

)
+

t

2
N(x∗, S(d)).

(47)�1 =
(
x∗
1
(x;d)

)
◦

=
�hH

S
(x;d)

�d
⋅ N

(
x, S0

)
+

t

2

�N(x∗,S(d))

�d
.

(48)�2 =
(
x∗
2
(x;d)

)
◦

=
�hH

S
(x;d)

�d
⋅ N

(
x, S0

)
−

t

2

�N(x∗,S(d))

�d
.

(49)V1
n
= �1 ⋅ N

(
x∗
1
, S1

)
,

(50)V2
n
= �2 ⋅ N

(
x∗
2
, S2

)
,

(51)
𝜕hH

S
(x;d)

𝜕d
=

𝜕hH
S

𝜕h
s,H

Si

𝜕h
s,H

Si

𝜕hH
Si

𝜕hH
Si

𝜕hH
S̃i

𝜕hH
S̃i

𝜕d
,

(52)
�hH

Mi
(p;Di)

�Di

=

[
�h

g

Mi
(x;Dg

i )

�D
g

i

, 0l
]
+

[
0
g,

�hl
Mi
(x;Dl

i)

�Dl
i

]
,
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where hH
Mi

(
p;Di

)
 and Di =

(
D

g

i
,Dl

i

)
 represent the hierarchical 

perturbation height field and shape design variable vector on 
the i-th parameter domain, respectively.

4 � Numerical implementation and design 
process

4.1 � Discrete sensitivity calculation

In this study, the finite element analysis of the shell structure 
is carried out using S3 elements in the commercial soft-
ware Abaqus, which are suitable for both thin and thick shell 
structures. The structural response (stress, strain, etc.) is then 
extracted to compute the objective function and numerical 
sensitivities. In addition, we set five integration points along 
the thickness direction of the shell elements and adopt Simp-
son’s rule for numerical integration.

To calculate Eq. (41) numerically, the perturbed surface 
S(d) is discretized into a triangular mesh, denoted as

where Se
�
(d) represents the e-th shell element (Fig. 8c). The 

discretized volume domain is defined as

where ��(d, t) represents the volume occupied by the e
-th shell element. Thus, the discrete form of Eq. (40) is 
expressed as

(53)S�(d) =
⋃ne

e=1
Se
�
(d),

(54)��(d, t) =
⋃ne

e=1
�e

�
(d, t) =

⋃ne
e=1

Se
�
(d) ×

�
−

t

2
,
t

2

�
,

where Ae represents the area of Se
�
 , and (⋅)1

e
, (⋅)2

e
 correspond 

to the values of the quantity (⋅) at S1e� , and S2e� , respectively.

4.2 � Design process

In this subsection, we briefly summarize the overall hierar-
chical shape optimization workflow, as illustrated in Fig. 9. 
First, the unstructured triangular mesh is generated on the 
middle surface of the initial shell model (Fig. 9a). For com-
plex shell structures, the surface mesh can be partitioned 
into multiple regions based on geometric features (Fig. 7), 
and simpler middle surfaces can be obtained through the 
surface cutting operation (Fig. 6). The middle surface is then 
parameterized using the CCM technique, and a hierarchical 
perturbation height field is defined within the parametric 
domain (Fig. 9b). This defined height field is subsequently 
applied to the initial mesh in Fig. 9a to generate the per-
turbed surface geometry (Fig. 9c). Finally, finite element 
analysis and sensitivity analysis are performed, and the 
design variables are updated iteratively until convergence 
is achieved by repeating the process shown in Fig. 9b‒d.

5 � Numerical examples

In this section, numerical examples are presented to validate 
the effectiveness of the proposed algorithm. Key factors that 
may influence the final design are also analyzed in detail. 
Unless otherwise specified, all geometric dimensions and 
material properties are treated as dimensionless parameters. 

(55)(C)◦ =
∑ne

e=1

��
−WCV

1
n

�1
e
+
�
−WCV

2
n

�2
e

�
Ae,

Fig. 9   Schematic diagram of the design process
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The material is assumed to be isotropic and linearly elastic, 
with Young’s modulus E = 1 and Poisson’s ratio v = 0.3 . 
The objective of the optimization problem is to minimize 
structural compliance (Eq. (28b)). The Method of Moving 
Asymptotes (MMA) (Svanberg 1987) is employed as the 
optimization solver to update the design variables. The pro-
posed hierarchical shape optimization algorithm involves 
two types of design variables, Dg and Dl . The initial set-
tings for each type of design variable are provided within the 
respective numerical examples. The optimization process is 
terminated at the 300th iteration.

5.1 � Hierarchical shape optimization of a plate

To eliminate the influence of the mapping process and the 
curved geometry of shell structures, a simple square plate 
model is selected as a baseline example. This allows for a 
clear and intuitive demonstration of the effectiveness of the 
proposed hierarchical shape optimization method. The geo-
metric model is illustrated in Fig. 10, with the plate thick-
ness specified as 0.2. The primary design parameters are as 
follows: the global shape is governed by a 6 × 6 NURBS net-
work, where the upper and lower bounds of the perturbation 
coefficients at the NURBS control points set to hgmax = 10 
and hg

min
= 0 , respectively. The perturbation coefficients 

associated with the structural boundary are fixed at zero 
to preserve the boundary shape, while the initial values of 
the remaining coefficients are set to h

g
=

h
g
max+h

g

min

2
 . The local 

shape is controlled by a 4 × 4 spline component layout, with 
the initial and maximum heights of each component set to 
h∗
i
= 1 and h∗,max

i
= 1 , respectively.

Based on the global design parameters, global-level shape 
optimization is first conducted. Since the mapping step is 
omitted, the global perturbation height field can be directly 
defined according to Eq. (2), and global shape variations 
are realized via Eq. (1). Figure 11 presents the iteration his-
tory and intermediate results of the global shape optimiza-
tion. The objective function decreases rapidly and converges 
efficiently. From the overall structural shape, although the 
geometry is modified through normal perturbations at mesh 
nodes, a smooth shape is achieved without the need for 
additional filtering operations. Next, local shape design is 
performed using the local design parameters. As described 
in Sect. 2.2, the local perturbation height field can also 
be directly constructed. The entire process is depicted in 
Fig. 12. Local components move and merge quickly, ulti-
mately forming rich morphological features on the plate sur-
face, which significantly enhance structural performance. 
The final structure also exhibits a comparatively smooth 
geometric configuration.

Comparing the results in Figs. 11 and 12, it is evident 
that global and local shape optimization address shape 

design from different perspectives: the former focuses on 
the overall structural contour, while the latter emphasizes the 
refinement of detail. Although both approaches effectively 
improve structural performance, differences in the defini-
tions of design variables and the scales of perturbations ren-
der direct or meaningful comparison inappropriate.

To achieve global shape control and local geometric 
refinement simultaneously, we implement the proposed 
hierarchical shape optimization method, performing 
concurrent optimization at both levels. The hierarchical 
optimization process is illustrated in Fig. 13, which dem-
onstrates how the proposed method modifies the global 
shape while simultaneously capturing local details through 
spline components. The optimization history indicates that 
the objective function decreases rapidly and subsequently 
stabilizes, with the compliance function reduced from 
250,767.60 to 467.98, representing a 99.81% decrease. 
This means a 536-fold improvement in structural stiff-
ness. Compared to global or local optimization alone, the 
objective value is further reduced. The results in Fig. 14 
provide an intuitive visualization of the optimized plate. 
Figure 14a‒d shows that the hierarchical shape optimiza-
tion method notably expands the design space, enriches 
the final design by integrating global and local modifica-
tions, and maintains structural smoothness. Figure 14e‒h 
reveals that the substantial improvement in stiffness is pri-
marily attributed to the wavy corrugations in the cross-
section, which serve as a key feature of the optimized 
design. Additionally, local protrusions near the four fixed 
boundaries are found to effectively alleviate out-of-plane 
deformation induced by support reactions.

In summary, global-level, local-level, and hierarchical 
shape optimizations are applied to the plate model. Com-
pared to single-level optimization approaches, the proposed 
hierarchical strategy not only improves overall structural 
performance but also enables detailed geometric refinement 
in local regions, demonstrating stronger synergistic optimi-
zation capability and greater design flexibility.

Fig. 10   Geometric schematic of the plate structure. The boundary 
conditions involve four fixed points, with a concentrated force applied 
at the center in the z-direction
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5.2 � Hierarchical shape optimization of complex 
shells using CCM technique

In this subsection, several surface examples are presented 
to evaluate the effectiveness of the proposed algorithm in 
optimizing complex shell structures.

5.2.1 � Conical shell structure

In this example, a conical shell reconstructed from a 3D 
point cloud (obtained via 3D scanning technology) is used 
to investigate the impact of different optimization strate-
gies on the final design. The results indicate that, compared 

Fig. 11   Iteration histories 
and intermediate results of 
the global shape optimization 
of the plate structure, with 
C0 = 26568.09 , C10 = 3053.26 , 
C100 = 906.99,C200 = 905.75 , 
C300 = 905.75 ( Cn represents the 
objective function value at the 
nth iteration step)

Fig. 12   Iteration histories and 
intermediate results of the local 
shape optimization of the plate 
structure, with C0 = 142787.61 , 
C10 = 9609.59 , C100 = 8496.65

,C200 = 8443.92 , C300 = 8409.01
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to sequential optimization—where global and local shape 
optimizations are conducted independently in a consecutive 
manner—the proposed hierarchical shape optimization (con-
current approach) achieves a lower objective function value 
and more reasonable design. The geometric dimensions 

and boundary conditions of the conical shell are shown in 
Fig. 15. The primary design parameters for conical shell 
are as follows: the global shape is controlled by a 10 × 10 
NURBS network, where the upper and lower bounds of the 
perturbation coefficients at the NURBS control points are 
set to hgmax = 20 and hg

min
= 0 , respectively. Similarly, the 

structural boundary shape is kept fixed, while the initial 
values of the remaining perturbation coefficients are set 

Fig. 13   Iteration histories and 
intermediate results of the 
hierarchical shape optimiza-
tion of the plate structure, with 
C0 = 15671.72 , C10 = 1437.62 , 
C100 = 686.96,C200 = 497.24 , 
C300 = 467.98

Fig. 14   Different views of the final design. a Front view 1. b Front 
view 2. c Back view 1. d Back view 2. e Cross-section at the trans-
verse quarter position. f Cross-section at the transverse half position. 

g Cross-section at the transverse three-quarters position. h Cross-sec-
tion along the diagonal position
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to h
g
=

h
g
max+h

g

min

2
 . The local shape is controlled by a 4 × 4 

spline component layout, with the initial height and maxi-
mum height of each component set to h∗

i
= 4 and h∗,max

i
= 4 , 

respectively.
Initially, the middle surface of the shell is mapped onto 

the parametric domain using the CCM technique, where 
a hierarchical perturbation height field is defined to 
facilitate the hierarchical shape optimization design with 
the iteration history and intermediate results depicted 
in Fig. 16. The optimization process converges rapidly, 
producing a stable structural design. The final design in 
Fig. 16 reveals that local shape components are primar-
ily concentrated around the loading points, enhancing 
local stiffness. For comparison, a sequential optimization 
strategy is employed. First, a global shape optimization 
is performed on the conical shell, and its iteration his-
tory is shown on the left side of Fig. 17. Through global 
shape modifications, a substantial increase in stiffness 
is observed. Subsequently, local shape optimization is 
applied after global shape optimization, as shown on the 
right side of Fig. 17. Although the optimization process 
converges quickly, its contribution to stiffness improve-
ment is minimal. Additionally, the final design exhibits 
discontinuous local protrusions, which may compromise 
the overall load transfer efficiency. It is also worth noting 
that in this example, the global shape optimization shown 
on the left side of Fig. 17 converges relatively slowly, in 
sharp contrast to the rapid convergence observed in the 
global optimization of the plate model in Fig. 11. This 
difference in convergence behavior may be attributed to 
the influence of the initial configuration on the explora-
tion of the global shape design space. For global shape 

optimization, improvements in structural performance 
often rely on large-scale geometric changes. However, 
the current example may already possess a relatively 
beneficial initial configuration, which could result in 
slower convergence during the early stage of iteration. 
In contrast, the hierarchical shape optimization strat-
egy introduces fine-tuned local shape adjustments along 
with global shape variations, which may facilitate better 
exploration of the global design space. In regions with 
concentrated loadings, the presence of local geometric 
features can effectively enhance local stiffness, leading 
to the rapid convergence behavior observed in Fig. 16.

In summary, by comparing the results in Fig. 16 (300 
iterations) and Fig. 17 (600 iterations), the proposed hier-
archical shape optimization algorithm demonstrates both 
improved efficiency and superior design quality, further 
highlighting its effectiveness and computational advantage.

5.2.2 � U‑shaped shell structure

To verify the effectiveness and generality of the proposed 
hierarchical shape optimization method under complex 
geometric conditions, a shell structure with a complicated 
boundary contour is introduced, as shown in Fig. 18. Mean-
while, to explore the influence of global shape variations on 
structural performance, three NURBS networks with vary-
ing resolutions are employed to control the number of global 
shape design variables. The primary design parameters for 
this example are as follows: the global shape is controlled by 
6 × 6 , 8 × 8 and 12 × 12 NURBS network, respectively. The 
upper and lower bounds of the perturbation coefficients at 
the NURBS control points are set to hgmax = 20 and hg

min
= 0 , 

respectively. Similarly, the structural boundary shape is kept 

Fig. 15   Problem settings of the conical shell example. The geometry 
model is reconstructed from the 3D point cloud data (a). b The shell 
structure (the thickness is set as 3) is fixed at four corners and sub-

jected to five concentrated forces (four at the middle of edges and one 
at the center of the surface). The forces are applied along the -z direc-
tion
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fixed, while the initial values of the remaining perturbation 
coefficients are set to h

g
=

h
g
max+h

g

min

2
 . The local shape is con-

trolled by a 4 × 6 spline component layout, with the initial 
height and maximum height of each component set to h∗

i
= 2 

and h∗,max

i
= 2 , respectively.

Figure 19a‒c shows the initial designs under three dif-
ferent parameter settings. Since the boundary shape is fixed 
while the interior region is assigned the initial perturbation 
coefficient h

g
 , and each design employs a different num-

ber of global shape design variables. This results in the 
generation of distinct initial configurations, which exhibit 
different initial compliance values. Figure 19d‒f further 
presents the corresponding final optimized results for each 
setting. It can be observed that as the global design resolu-
tion increases, the optimized geometries exhibit more pro-
nounced and complex shape features. A distinct trend can 

Fig. 16   Iteration histories and 
intermediate results of the hier-
archical shape optimization of 
the conical shell structure, with 
C0 = 745.51 , C10 = 185.38 , 
C100 = 143.15,C200 = 140.33 , 
C300 = 138.69

Fig. 17   Iteration histories and intermediate results of the sequential 
shape design for the conical shell structure. Before the 300th step, 
the iteration process utilizes the global shape design approach to 
optimize the structural performance, in which the compliance func-
tion is reduced from 938.92 to 184.06. At the 301st step, local shape 
optimization was performed, and the compliance function is ulteriorly 
reduced to 164.32

Fig. 18   Schematic geometric illustration of the U-shaped bound-
ary shell structure. The geometric dimensions of the structure are 
L1 = 200mm,L2 = 600mm, L3 = L4 = 100mm, L5 = 50mm , and 
thickness t = 1mm . In this example, the elastic modulus of the struc-
ture is E = 70Gpa and the Poisson’s ratio is v = 0.3 . The boundary 
conditions consist of a fully fixed left edge and a shell edge load of 
1N∕mm applied along the x-direction at the right edge. Currently, the 
structural compliance is 26,868.56
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be observed, wherein more pronounced wavy undulations 
emerge in the structure, thereby enhancing its bending stiff-
ness and reducing the objective function value. However, 
upon further comparison of the final objective values for 
the three cases, it becomes evident that the rate of improve-
ment diminishes as the NURBS resolution increases. This 
observation might suggest that with further expansion of 
the NURBS network, the enhancement in structural stiff-
ness tends to reach a state of convergence. In such cases, 
it becomes necessary to reasonably select parameter set-
tings to balance structural performance and computational 
cost. Moreover, in practical engineering design, the design 
space is often constrained by factors such as manufacturing 
limitations and cost control. While high-resolution designs 
can offer better performance, they may also result in greater 
geometric complexity and increased manufacturing cost. 
Therefore, comparing the results under varying parameter 
settings offers meaningful differences, enabling designers 
to make more targeted trade-offs among performance, cost, 
and manufacturability, and providing greater flexibility for 
addressing diverse engineering demands.

It should be noted that, based on mechanical intuition, the 
optimal structure in this example is expected to approach a 
flat plate. However, the reason the final structure remains 
curved arises from a feature of our shape optimization 

approach, which is based on perturbations along the normal 
direction. Therefore, under the current optimization frame-
work, the geometric transformation is restricted and the 
structure unable to fully degenerate into a flat plate.

5.2.3 � Nozzle‑shaped cylindrical shell structure

This example demonstrates the application of the surface 
cutting operation within the hierarchical shape optimization 
framework. The selected geometry is similar to the nozzle 
section of an engine exhaust system, with its geometric 
dimensions and boundary conditions shown in Fig. 20. The 
primary design parameters for this example are as follows: 
the global shape is controlled by 8 × 8 NURBS network, 
where the upper and lower bounds of the perturbation coef-
ficients at the NURBS control points are set to hgmax = 8 
and hg

min
= 0 , respectively. Unlike the previous cases, in 

this example, only the shape at the fixed end on the left 
side is constrained to remain unchanged, i.e., the perturba-
tion coefficients in this region are fixed at zero throughout 
the optimization, while the initial values of the remaining 
perturbation coefficients are set to h

g
=

h
g
max+h

g

min

2
 . The local 

shape is controlled by a 6 × 6 spline component layout, with 

Fig. 19   Initial designs, itera-
tion curves, and final designs 
obtained with different NURBS 
networks. a‒c Initial designs 
corresponding to the cases 
of global shape network set 
as 6 × 6 , 8 × 8 and 12 × 12 , 
respectively. The compliance 
functions of the initial designs 
are 3054.82, 2128.34 and 
1344.22, respectively. d‒f The 
compliance functions of the 
final designs are 251.14,158.69 
and 100.21, respectively
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the initial height and maximum height of each component 
set to h∗

i
= 1 and h∗,max

i
= 1 , respectively.

To enable parametric mapping, the surface cutting 
operation is applied, as illustrated by the cutting lines in 
Fig. 21a. This approach facilitates the construction of the 
initial hierarchical shape optimization design, depicted in 
Fig. 21b. The iteration history and intermediate results are 
shown in Fig. 22. During the first five iterations, the local 
shape components generated in the initial design quickly 
vanish, as seen in Fig. 22a‒d. In subsequent iterations, 
shape modifications occur exclusively at the global level. 
From a mechanical perspective, for a cylindrical shell 
subjected to torsion, increasing the cross-sectional radius 
is an effective strategy for enhancing torsional stiffness, 
provided that thickness and material properties remain 
unchanged. Figure  22e, f demonstrates that the shell 
cross-section expands as much as possible, optimizing 
torsional rigidity. Moreover, the gradually transitioning 
toroidal surface near the fixed boundary helps to effec-
tively reduce stress concentration. While previous exam-
ples highlight the advantages of hierarchical shape optimi-
zation in improving structural performance, this example 
reveals that under certain boundary conditions, the optimal 
configuration may be a completely smooth structure. Dur-
ing optimization, the algorithm rapidly eliminates local 
shape components to achieve a smooth configuration. This 
observation further validates the adaptability and effec-
tiveness of the hierarchical shape optimization method, 

demonstrating its capability to accommodate various 
structural design requirements.

5.2.4 � Tee‑branch pipe shell structure

In this final example, the multi-patch stitching scheme is 
utilized. The Tee-branch pipe shell structure, shown in 
Fig. 23a, cannot be directly mapped onto a planar domain 
due to its geometric complexity. To address this, the struc-
ture is decomposed into simpler surface patches (as illus-
trated in Fig. 23b), allowing for individual parameteriza-
tion of each surface. This enables the implementation of 
hierarchical shape optimization through the multi-patch 
stitching scheme, as referenced in Fig. 7. In this exam-
ple, identical design parameters are applied to each patch, 
with the main design parameters being: the global shape 
is controlled by 6 × 6 NURBS network, where the upper 
and lower bounds of the perturbation coefficients at the 
NURBS control points are set to hgmax = 1 and hg

min
= 0 , 

respectively. Only the shape at each pipe junction is fixed, 
i.e., the perturbation coefficients in this region are fixed 
at zero, while the initial values of the remaining perturba-
tion coefficients are set to h

g
=

h
g
max+h

g

min

2
 . The local shape 

is controlled by a 4 × 4 spline component layout, with the 
initial height and maximum height of each component set 
to h∗

i
= 0.1 and h∗,max

i
= 0.1 , respectively.

The initial design is depicted in Fig.  24a, while the 
iteration history and intermediate optimization results are 
shown in Fig. 24. The results indicate that compliance rap-
idly decreases and stabilizes at a converged value. The final 
optimized design reveals that distinct and complex shape 
modifications emerge throughout the structure due to the 
varying boundary conditions applied to each pipe section. 
For cylindrical pipe section II (Fig. 23b), its structural char-
acteristics and boundary conditions closely resemble those 
in Sect. 5.2.3. Consequently, the optimized design elimi-
nates local shape modifications, resulting in a smooth con-
figuration. In contrast, for the non-circular pipe sections I 
and III, localized shape details develop around the pipes 
as the global shape undergoes minor adjustments. These 

Fig. 20   Schematic illustration of the nozzle-shaped cylindrical shell 
structure. In this example, the shell thickness is set to 0.4, with 
boundary conditions consisting of a fixed constraint at the left end 
and a bending moment of 300 applied at the right end. The structural 
compliance without any design modifications is 1029.04

Fig. 21   The cutting line 
diagram of the nozzle-shaped 
cylindrical shell structure (the 
cutting operation referring to 
Fig. 6) and the initial design of 
the hierarchical shape optimiza-
tion. The compliance corre-
sponding to the initial design is 
962.24
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localized modifications enhance the overall structural stiff-
ness. Although this example features nontrivial structural 
characteristics, the application of the multi-patch stitching 
scheme further demonstrates the effectiveness of the pro-
posed algorithm in handling complex shell structures.

6 � Conclusions

This study proposes a novel shape optimization method 
for thin-shell structures, integrating the advantages of 
CAD-based and node-based approaches. By leveraging the 
moving morphable components method and computational 
conformal mapping technique, the proposed method ena-
bles efficient shape optimization of complex shell geom-
etries. The construction of a NURBS-based shape space 
allows global shape modifications with a set of control 

Fig. 22   Iteration histories and 
intermediate results of the 
hierarchical shape optimization 
of the nozzle-shaped cylindrical 
shell structure. (a)‒(h) Rep-
resent the intermediate results 
at the 1st, 2nd, 3rd, 5th, 10th, 
50th, 100th, and 300th iteration 
steps, respectively. The compli-
ance at the 300th step is 471.18

Fig. 23   Schematic illustration of the Tee-branch pipe shell structure. a Boundary condition. The shell thickness is set to 0.1. b The decomposed 
simple surfaces and their dimensional parameters. Currently, the structural compliance is 557.18
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parameters while still being compatible with mesh-based 
nodal representation. The embedded shape component 
description facilitates the incorporation of local shape var-
iations on general curved surfaces. Additionally, the intro-
duction of the topology description function (TDF) and 
enhanced spline-based components enables the method to 
capture intricate local geometries accurately.

The hierarchical shape optimization framework allows 
for simultaneous global and local shape modifications, 
significantly expanding the design space and enhancing 
the structural representation. Furthermore, the surface cut-
ting operation and multi-patch stitching scheme extend 
the method’s applicability, enabling it to handle a broader 
range of complex shell structures. Numerical examples 
demonstrate the effectiveness of the proposed algorithm in 
improving structural stiffness. By integrating CAD-based 
optimization technique with the MMC framework, the 

method achieves rapid convergence with fewer iterations 
and reduced design variables.

In the future, the proposed method can be extended to 
address other optimization objectives, including natural 
frequency maximization, buckling resistance, and stress 
minimization. Furthermore, incorporating manufacturing 
constraints into the optimization process presents a prom-
ising research direction, particularly for shell structures in 
sheet metal forming. Exploring draft angles, symmetry con-
straints, and other manufacturability conditions with shape 
optimization could lead to more practical and efficient co-
design results.
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