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Abstract

In this article, a novel explicit approach for designing complex thin-walled structures based on the Moving Morphable
omponent (MMC) method is proposed, which provides a unified framework to systematically address various design issues,

ncluding topology optimization, reinforced-rib layout optimization, and sandwich structure design problems. The complexity
f thin-walled structures mainly comes from flexible geometries and the variation of thickness. On the one hand, the geometric
omplexity of thin-walled structures leads to the difficulty in automatically describing material distribution (e.g., reinforced
ibs). On the other hand, thin-walled structures with different thicknesses require various hypotheses (e.g., Kirchhoff–Love shell
heory and Reissner–Mindlin shell theory) to ensure the precision of structural responses. Whereas for cases that do not fit the
hell hypothesis, the precision loss of response solutions is non-negligible in the optimization process since the accumulation
f errors will cause entirely different designs. Hence, the current article proposes a novel embedded solid component to tackle
hese challenges. The geometric constraints that make the components fit to the curved thin-walled structure are whereby
atisfied. Compared with traditional strategies, the proposed method is free from the limit of shell assumptions of structural
nalysis and can achieve optimized designs with clear load transmission paths at the cost of few design variables and degrees
f freedom for finite element analysis (FEA). Finally, we apply the proposed method to several representative examples to
emonstrate its effectiveness, efficiency, versatility, and potential to handle complex industrial structures.
2023 Elsevier B.V. All rights reserved.

eywords: Moving morphable components; Thin-walled structures; Topology optimization; Complex surfaces; Surface parameterization;
omputational conformal mapping (CCM)

1. Introduction

Thin-walled structure has a pivotal role in engineering applications, such a structure form is widely employed
s the main load-carrying structures in heavy equipment, such as vessels, airplanes, and spacecraft. Although thin
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and light, thin-walled structures span over relatively large areas and hold externally applied load in an efficient
way [1]. Whereas, thin-walled structures commonly suffer from extreme loads and complex service environments
in practical applications. Hence, topology optimization on thin-walled structures is widely investigated to enhance
mechanical properties and further resist deformation, buckling, and vibration.

Topology optimization aims at finding the optimal material distribution in the prescribed design domain under
arious constraints. With the aid of such a powerful tool, engineers can find inspiring structural configurations and
reate competitive products systematically. The invention of this revolutionary design tool can be traced back to the
ioneering work of Bendsøe and Kikuchi [2]. Since then, many topology optimization methods, including the Solid
sotropic Material with Penalization (SIMP) method [3,4], evolutionary structural optimization (ESO) method [5],
nd level set method [6,7], have been developed and successfully applied in numerous scientific and engineering
pplications.

Different from traditional topology optimization problems, the main difficulties and challenges in thin-walled
tructure design are as follows. First, the shape of the concerned thin-walled structure is usually flexible due to
he complexity of geometry, which may involve complicated surface operations to form a structure with clear
oundaries. Secondly, the finite element meshes must be relatively refined to approximate the complex geometry [8],
hich will increase the number of design variables tremendously under the framework of implicit optimization
ethods. Last but not least, the filter approaches, which are very effective in restraining the numerical instabilities

e.g., islanding effect, grey elements, and the checkerboard pattern) [9,10] of the pixel-based topology optimization
ethod, are originally developed in flat space (2D or 3D) and may encounter some challenges when applying on

hin-walled structures [11] due to the variation of surface curvature.
On account of the abovementioned challenges, the field of structural design on thin-walled structures has

ttracted attention in recent years. Liu et al. [12] proposed the Heaviside-function-based directional growth topology
arameterization (H-DGTP) of the casting constraints and successfully applied it for simultaneously optimizing
he layout and size of the stiffeners on thin-walled structures. Based on the smeared stiffener method (SSM),
ao et al. [13] developed a hybrid minimum-weight optimization formulation for hierarchical stiffened thin-walled

tructures against buckling loads. Later, Wang et al. [14] extended the SSM method to the NSSM method. A new
fficient and accurate numerical solution technique for large-scale stiffened shells is introduced to overcome the
rawbacks of the traditional SSM method. Träff et al. [15] developed a high-performance computing framework for
olving ultra-large-scale thin-walled structure topology optimization problems, where the multigrid approach with
ood parallel scaling properties is utilized to solve the linear system. Deng et al. [11] introduced the filter formulation
onstructed on surfaces to alleviate numerical instabilities in topology optimization on thin-walled structures. Some
ther recent excellent progress can be found in Refs. [16–27].

On the other hand, the mapping-based approaches also received a lot of attention recently, owing to their
apability of handling complex geometries. Hassani et al. [28] realized simultaneously optimizing the shape and
opology of thin-walled structures, where the Non-Uniform Rational B-Spline (NURBS) description is employed to

odel and control geometry shape. Choi et al. [29] proposed a constrained isogeometric design optimization method
or thin-walled lattice structures, where the free-form deformation and the global curve interpolation are utilized to
efine the control net of lattice structure on curved middle surfaces. Constructed upon the embedded isogeometric
irchhoff–Love shell theory, Hirschler et al. [30] developed a novel approach that deals with rib layout optimization

nd shape optimization on non-conforming multi-patch thin-walled structures, which is capable of tackling the
eometric constraint of connecting interfaces between the panel and the stiffeners. Feng et al. [31] proposed an
ffective B-spline parameterization method for stiffener layout optimization on thin-walled shell structures, which
roduces checkerboard-free design results with a clear layout and avoids overhang stiffeners. Different from the
eometric mappings constructed by smooth analytical functions in the spline-type surface descriptions, the mesh
arameterization technique establishes a numerical mapping relation from a mesh surface to a planar parametric
omain, where the surface can be obtained from a point cloud, a CAD model or a mesh model. Hence, mesh
arameterization has a lower construction cost and receives growing attention in the field of designing thin-walled
tructures [32–35].

Although the above works have led to significant breakthroughs, the major drawback of these methods is that
hey are mainly constructed based on implicit approaches, and may cause problems such as the islanding effect,
rey elements, checkboard phenomenon, and enormous design variables. Hence, explicit topology optimization

ethods have received considerable attention and rapid development [36–38]. Among them, the Moving Morphable
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Fig. 1. Schematic illustration of the necessity of the embedded component. (a) The component defined in Euclidean space intrudes into the
ase panel during the optimization process. (b) The embedded component perfectly follows the shape variation of the thin-walled structure.

omponent (MMC) method uses a set of components with explicit geometric descriptions to define the structural
opology [36]. Benefiting from the inherent explicit geometric descriptions, the MMC method requires no filtering
perators, has few design variables, and can obtain clear load paths. Currently, the MMC method has been extended
o various scientific and engineering application scenarios [39–42].

In recent years, there has been a growing trend of research applying explicit topology optimization methods to
he field of thin-walled structure design [43–50]. However, several problems still have not been well addressed.
ne is that under shell-based solution frameworks, the displacements along the thickness direction are normally

onsidered as varying linearly, which inevitably reduces the accuracy of response solutions. On the other hand,
he shell model has difficulty in describing different design problems unitedly, e.g., topology optimization, stiffener
ayout optimization, and sandwich structure optimization. Considering these above issues, the present article intends
o propose a novel embedded component description based on the Computational Conformal Mapping (CCM)
echnique, in which the embedded components perfectly follow the shape variation of thin-walled structures (shown
n Fig. 1).

The remainder of this article is organized as follows. Section 2 mainly introduces the theoretical foundations
f the proposed method, including the MMC method, the CCM technique, the topology description function
TDF) construction on complex surfaces, and the description of embedded components. In Section 3, problem
ormulation and sensitivity analysis are derived in detail. Section 4 is devoted to providing specific solution
mplementations, including the offset-based solid mesh generation scheme, the solution of structural responses, the
iscrete sensitivities, and the DOF removal technique. Section 5 describes the outline of the primary optimization
rocedures and comments on critical technical details. In Section 6, representative numerical examples are
onsidered to demonstrate the effectiveness and the efficiency of the current algorithm, and some dominating
actors/parameters in the thin-walled structure design are investigated. Some conclusions of the proposed algorithm
nd potential extensions bring the article to a close in Section 7.

. Theoretical foundations

.1. Moving Morphable Component (MMC) method

In conventional implicit topology optimization approaches, design variables are generally defined by pixel-
ased elements or nodes, which may encounter difficulties when interpreting the final optimization results. To
ackle numerical instabilities (including the islanding effect, grey elements, checkboard phenomenon, etc.) from
he source, the MMC method is proposed to solve topology optimization problems geometrically [36]. Under the

MC framework, the structures are constructed based on a group of explicitly described components, which makes

he design variables contain more geometric, mechanical, and engineering meanings.

3
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Fig. 2. Schematic illustration of the typical 2D structural component.

In the MMC method, the topology description function (TDF) is employed to characterize the domain occupied
by the components. In the present work, the TDF of whole structure is defined as follows:⎧⎪⎪⎨⎪⎪⎩

φs (x) > 0, if x ∈ Ωs,

φs(x) = 0, if x ∈ ∂Ωs,

φs(x) < 0, if x ∈ Ω\(Ωs ∪ ∂Ωs),

(2.1)

where Ω denotes the design domain, Ωs represents the region occupied by the designed structure. Under the MMC
framework, the designed structure is composed of a group of components. Taking the i th component as an example,
the geometry of this component is shown in Fig. 2, and the corresponding TDF is defined as:

φi = 1 −

⎛⎝( x ′

i

L i

)6

+

(
y′

i

fi
(
x ′

i

))6
⎞⎠1/6

, (2.2)

with (
x ′

i

y′

i

)
=

[
cos θi sin θi

− sin θi cos θi

](
x − x i

0

y − yi
0

)
, (2.3)

fi
(
x ′

i

)
=

t1
i + t2

i − 2t3
i

2L2
i

(
x ′

i

)2
+

t2
i − t1

i

2L i
x ′

i + t3
i , (2.4)

where x i
0 and yi

0 are the coordinates of the i th component’s central point, and θi denotes its rotational angle with
respect to the global Cartesian coordinate system. In Eqs. (2.2)–(2.4), t1

i , t2
i , t3

i , and L i denote three half-thickness
arameters and the half-length parameter of the component, respectively. At the structure level, the TDF φs consists
f the TDF of each component via the assembly function as:

φs
= max (φ1, . . . , φi , . . . , φn) , (2.5)

here n denotes the total number of components in the design domain. Furthermore, the vector of the design
ariables regarding the i th component is defined as Di =

(
x i

0, yi
0, θi , L i , t1

i , t2
i , t3

i

)
, and the vector of the design

ariables of the whole structure is assembled as D = (D1, D2, . . . , Dn).

.2. Computational Conformal Mapping (CCM)

Due to the curved nature of complex thin-walled structures’ mid-surfaces, conventional MMC methods in flat
pace are not applicable to topology optimization on complex thin-walled structures (the obstacle is explained
isually in Fig. 1(a)). To address this issue, the present study establishes a mapping between the middle surface of

he concerned thin-walled structure and a standard parametric domain.
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Mapping a surface with an arbitrary shape to a suitable domain, also termed surface parameterization [51], has
ong been a central issue in computer industries. Owing to the dimension-reduction property, many tough issues such
s texture mapping, surface registration, morphing, and remeshing are simplified [52]. Benefitting from the rapid
evelopment of computer technology, powerful tools have been invented and introduced to fulfill such a challenging
ask [53–56]. Among them, two major classes are authalic (area-preserving) mappings and conformal (angle-
reserving) mappings. Since the geometries of objects are commonly described by the mesh models, conformal
apping receives much more attention owing to its property of preserving mesh quality. In the present work, the

omputational method for solving conformal mappings developed in [57–59] is adopted to achieve an MMC-friendly
apping. The core procedures are summarized as follows.
Let S denote a simply-connected open surface in R3 (S is the middle surface of the concerned thin-walled

tructure), the goal of the adopted CCM technique is to compute a conformal mapping f : S → M, where M is
a rectangular parametric domain defined in R2. Instead of directly computing the mapping, the current algorithm
composes two quasi-conformal mappings with proper Beltrami coefficients, which significantly simplifies and speeds
up the computation process. Disk harmonic mapping is utilized as the initialized mapping (i.e., the first quasi-
conformal mapping), which is easily obtained by solving a system of partial differential equations via the finite
element method [60]. More specifically, let D denote a unit disk in the complex plane C (see Fig. 3(a)). The
harmonic mapping h :S → D ⊂ C satisfies the following equations:{

∆Sh = 0, inS, (a)

h (∂S) = ∂D, (b)
(2.6)

where ∆S represents the Laplace operator defined on surface S, ∂S and ∂D denote the boundaries of S and D,
respectively. It is noteworthy that the resultant mapping h has reduced the dimension of the original surface and
realized the purpose of surface parameterization, whereas angular distortions are possibly involved in the process.
For the sake of revising the conformality distortion (to enhance mesh quality) and achieving the bijectivity (to
avoid the overlaps of meshes), the second quasi-conformal mapping is constructed by the so-called linear Beltrami
solver (LBS) scheme developed in [57,58], and the core idea is reconstructing a mapping based on a given Beltrami
coefficient.

Let µh−1 = ρ + jτ (which is calculated explicitly from the solution of Eq. (2.6)) denote the Beltrami coefficient
of the inverse mapping h−1, where ρ and τ are the real and imaginary part, respectively, with j representing the
imaginary unit ( j2

= −1). Suppose g(z = x + j y) = u(x, y) + jv(x, y) :D → M is the second desired quasi-
conformal mapping (see Fig. 3(b)), whose Beltrami coefficient is given by µg = µh−1 . Here (x, y) and (u, v) are
the complex coordinates defined on the unit disk D and the parameter domain M, respectively. According to the
LBS scheme, the components of the mapping g satisfy:{

vy = α1ux + α2u y, (a)

−vx = α2ux + α3u y, (b)
(2.7)

where α1 =
(ρ−1)2

+τ2

1−ρ2−τ2 , α2 = −
2τ

1−ρ2−τ2 , and α3 =
(ρ+1)2

+τ2

1−ρ2−τ2 . Similarly, we have{
−u y = α1vx + α2vy, (a)

ux = α2vx + α3vy . (b)
(2.8)

Furthermore, since
(

∂(·)

∂x , ∂(·)

∂y

)
·
(
vy, −vx

)
= 0, and

(
∂(·)

∂x , ∂(·)

∂y

)
·
(
−u y, ux

)
= 0, we have⎧⎪⎪⎨⎪⎪⎩

∇ · (A (∇u)) = 0, in D, (a)

∇ · (A (∇v)) = 0, in D, (b)

g (∂D) = ∂M, (c)

(2.9)

where ∇ (·) =

(
∂(·)

∂x , ∂(·)

∂y

)
, A =

(
α1 α2

α2 α3

)
, and ∂M denotes the boundary of the rectangle M. Up to now, the
task of constructing the mapping g is simplified to solving the above generalized Laplace equations, which are also

5



W. Huo, C. Liu, Y. Liu et al. Computer Methods in Applied Mechanics and Engineering 417 (2023) 116431

T

s

c

Fig. 3. Schematic illustration of the process of solving the desired conformal mapping by composing two quasi-conformal mappings. (a)
he first mapping. (b) The second mapping.

olved through the finite element method. Once mappings h and g are obtained, the ultimate mapping f :S → M

is established as f = g ◦ h. The conformality and bijectivity (means no folding or overlaps of meshes exist in
the parameterization results) of the acquired mapping are ensured, which are essential for alleviating nonlinearity
and avoiding singularity in the problem formulation of structural optimization. For theoretical fundamentals and
technical details of the CCM technique, please refer to [57–59] and references therein.

2.3. TDF construction on complex surfaces

In this subsection, the TDF construction on a simply-connected open surface with zero genus is firstly explained.
On account of the geometric complexity of a general surface, the current method further integrates the surface-
cutting operation and the multi-patch stitching scheme to extend the application scope and enhance the robustness
of algorithms.

2.3.1. TDF construction on a simply-connected open surface with zero genus
Let S denote a simply-connected open surface with zero genus. The parametric domain M and conformal

mapping f are constructed based on the abovementioned CCM technique (as depicted in Fig. 4(a)). The TDF
φs
M ( p; D) in parametric domain M is firstly constructed via the component description of the typical 2D MMC (as

shown in Fig. 4(b)), where p and D represent the point in the parametric domain and the vector of design variables,
respectively. Since the mapping f is bijective, that is, for each point x ∈ S, there exists a point f (x) ∈ M that
orresponds to x and vice verse. Based on such a property, the TDF of S is naturally defined as

φs
S (x; D) = φs

M ( f (x); D) , (2.10)

which forms the material distribution on the concerned surface S (as shown in Fig. 4(c)). This treatment is well-posed

owing to the bijectivity of the mapping f .

6
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a
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Fig. 4. TDF definition on a simply-connected open surface with genus zero. (a) The conformal mapping and the parametric domain. (b)
TDF construction in the parametric domain. (c) TDF construction on the concerned surface.

2.3.2. TDF construction on a surface of non-zero genus
When the topology of the concerned surface S is complex (e.g., multi-connected, non-zero genus, etc.), the

utilized CCM technique cannot be applied directly to obtain the conformal mapping and parametric domain. Taking
the classical torus surface as an example (shown in Fig. 5(a)), the surface-cutting operation is adopted to generate an
intermediate surface S∗ (a simply-connected open surface with zero genus). The TDF construction of S∗ is defined
s φs

S∗ (x; D) = φs
M ( f ∗(x); D) where f ∗

: S∗
→ M is the conformal mapping obtained by the CCM technique

shown in Fig. 5(b)). Considering that the bijectivity is destroyed after the cutting process and φs
S∗ (x) takes different

alues on different sides of a specific cutting line Γi on S (i.e., Γ ′

i and Γ ′′

i on S∗, see Fig. 5(a) for reference), the
TDF of the original surface φs

S (x; D) is defined as:

φs
S (x; D) =

{
φs
S∗

(
f ∗ (x) ; D

)
, if x ∈ S\Γi , (a)

max
(
φs
S∗

(
f ∗
(
x′
)
; D

)
, φs

S∗ ( f ∗(x
′′

); D)
)

, if x ∈ Γi , (b)
(2.11)

where f ∗
(
x′
)

and f ∗(x ′′

) denote the values of f ∗ taking on x ∈ Γ ′

i and x ∈ Γ ′′

i , respectively.

2.3.3. TDF definition via the multi-patch stitching scheme
In principle, the aforementioned procedures can be applied to any surface that has manifold property. Neverthe-

less, the constructed global parameterizations are normally too stiff, which will cause some numerical instabilities
during the construction of φs

S (x; D). This issue is solved by the multi-patch stitching scheme. In this scheme, the
surface S is decomposed into NU patches, that is, S =

⋃NU
k=1 Uk , and the vector of design variables is assembled

as
{

Dk}
k=1,2,...,NU

, where Dk
=

(
Dk

1, Dk
2, . . . , Dk

nk

)
represents the component set of the kth patch. There is no

constraint of the specific shape of patch Uk(k = 1, 2, . . . , NU), and the TDF φs
Uk

can be determined through the
procedures described in Sections 2.3.1 and 2.3.2.

Taking an eight-shaped torus as the example, the process of the TDF construction based on the multi-

patch stitching scheme is depicted in Fig. 6. To begin with, the original surface is decomposed into individual

7
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Fig. 5. Parameterization and TDF construction of a surface with non-zero genus. (a) Parameterization of a surface with non-zero genus via
the surface-cutting operation. (b) TDF definition on a surface with non-zero genus.

Fig. 6. TDF construction on a complex surface via the multi-patch stitching scheme. (a) Decomposing the concerned surface into individual
patches according to geometric features. (b) TDF construction on each patch. (c) TDF extensions from surface patches to the original surface.
(d) TDF definition on the original surface.

surface patches (shown in Fig. 6(a)). For each patch Uk , the surface-cutting operation is utilized to generate the
corresponding intermediate surface U∗

k , and the CCM technique is conducted to obtain the conformal mapping
f ∗

k :U∗

k → Mk , where Mk denotes the parametric domain. Then, as demonstrated in Fig. 6(b), the TDF φs
Uk

(
x; Dk)

of Uk is defined through Eqs. (2.10)–(2.11), where Dk represents the design variables of the components placed
s
in parametric domain Mk . For the purpose of constructing the global TDF of S, the definition of TDF φUk

(x) is

8
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extended to the whole surface as:

φs
US

k

(
x; Dk)

=

{
φs
Uk

(
x; Dk) , if x ∈ Uk (a)

const, if x /∈ Uk, (b)
(2.12)

where const is a negative number (e.g., const = −1, and the actual value does not affect the optimization result),
which represents no material is distributed out of the area Uk (as illustrated in Fig. 6(c)). In this manner, the global
TDF of surface S (as depicted in Fig. 6(d)) can be obtained easily by:

φs
S (x; D) = max

(
φs
US

1
, φs

US
2
, . . . , φs

US
NU

)
, (2.13)

additionally, it is noteworthy that the intersection between two patches is normally non-empty (i.e., Uk ∩Ul ̸= ∅),
which is necessary for smoothing connections of the components located on neighboring domains. The multi-patch
stitching scheme significantly reduces the distortions of parameterization and enhances the fidelity of the description
of components, especially for surfaces of large local curvature, high genus, and non-manifold properties.

2.4. The description of the embedded components

Suppose B is the domain occupied by the concerned thin-walled structure, and S is the middle surface of B.
The solid domain B can be decomposed in the form of Cartesian product, i.e., B = S × ω, where ω =

[
−

t
2 , t

2

]
representing the variation range of thickness coordinate ω, and the parameter t represents the thickness varying along
the surface, and we have S = B |ω=0. In this manner, the complexity of the original solid domain is transferred to the
middle surface, whose TDF can be constructed according to the abovementioned sections. To construct embedded
components, the projection operation is resorted to define material distribution. For each point x in domain B, the
TDF is defined as

φs
B (x; D) = φs

S (x⊥; D) , (2.14)

where x⊥ is the projection point of x to surface S, which is obtained by solving the extreme value problem that
minimizes the Euclidean distance:

x⊥ = argmin
xS∈S

(∥x − xS∥2) , (2.15)

and the thickness coordinate of x (i.e., the distance from point x to its projection point x⊥) is defined as
ω(x) = ∥x − x⊥∥2. By utilizing the projection operation, the material distribution of domain B is constructed
as ρs

B (x; D) = H (φs
S (x⊥; D)), where H (·) represents the Heaviside function employed for regularization. To

develop a unified framework that can be used to optimize various types of thin-walled structures (e.g., topology
optimization, reinforced structure design, sandwich structure design), the following material distribution definitions
are proposed:

ρs
B (x; D) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρ1, if ω(x) ∈ [−
t
2
, −

t
2

+ ω2

)
, (a)

H (φs
S (x⊥; D)), if ω(x) ∈

[
−

t
2

+ ω2,
t
2

− ω1

]
, (b)

ρ2, if ω(x) ∈

(
t
2

− ω1,
t
2

], (c)

(2.16)

where ω1 and ω2 represent two prescribed thicknesses of the base panels, and ρ1 and ρ2 represent two prescribed
densities of the base panels, respectively. In this manner, different design problems are distinguished by the thickness
coordinate. As demonstrated in Fig. 7, the unified framework can describe various structural forms by taking
different values of parameters ω1 and ω2. For instance, when the values of prescribed thicknesses are taken as
ω1 = 0 and ω2 = 0, the TDF describes a structure for topology optimization (as shown in Fig. 7(b)). When

ne of the prescribed thicknesses is non-zero, the TDF describes a structure for rib-reinforcing design (as shown in
ig. 7(c)). When these two prescribed thicknesses are non-zero, the TDF describes a structure for sandwich structure
esign (as shown in Fig. 7(d)). In addition, parameters ρ1 and ρ2 are set to describe cases of multiple materials,
onsidering that ribs and skin may be made of different materials.
9
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Fig. 7. Schematic illustration of the embedded components. (a) The material distribution of the solid domain is obtained via the projection
operation from the middle surface. Different application scenarios, i.e., (b) topology optimization, (c) rib-reinforcing structure design, and
(d) sandwich structure design, are unified in the proposed framework.

3. Problem formulation and sensitivity analysis

This section first states the problem formulation in the present MMC-based solution framework. Then, the
sensitivity analysis considering a general function is further elaborated on.

3.1. Problem statement

Without loss of generality, a typical optimization problem formulation can be written as:

Find D = (D1, D2, . . . , Dn) (3.1a)

Minimize I = I (D) , (3.1b)

S.t.

gi (D) ≤ 0, i = 1, . . . , ng (3.1c)

hi (D) = 0, i = 1, . . . , nh (3.1d)

D ∈ UD, (3.1e)

where the symbol I denotes a general objective function and UD is the admissible set that the design variable
vector D belongs to. In Eq. (3.1), gi (D) and hi (D) are inequality and equality constraint functions, respectively.
To be specific, as presented in Fig. 8, a static compliance minimization problem under the constraint of a prescribed
volume fraction V (taken as the upper bound) defined in a thin-walled structure region is considered. Suppose B

is the domain occupied by the concerned thin-walled structure, the considered design problem under the current
MMC-based framework can be formulated in the following form:

Find D = (D1, D2, . . . , Dn) , u (x) (3.2a)

Minimize C =

∫
B

H (φs
B(x; D))F · udV +

∫
∂B

t · udS, (3.2b)
S.t.

10
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Fig. 8. Minimizing the compliance of a thin-walled structure via topology optimization.

∫
B

E(H (φs
B(x; D))) : ε (u) : ε (v) dV =

∫
B

H
(
φs
B (x; D)

)
F · vdV

+

∫
∂B

t · vdS, ∀v ∈ Uad (3.2c) (3.2c)∫
B

H (φs
B(x; D))dV ≤

∫
B

VdV, (3.2d) (3.2d)

u ∈ Uu, D ∈ UD, (3.2e)

here u is the primary displacement belonging to a prescribed constraint set Uu and v is the virtual displacement
elonging to an admissible set Uad . In Eq. (3.2), H (·) is the Heaviside function and C is the static compliance
unction. The symbols F and t denote the body force density and the prescribed surface traction, respectively.
dditionally, E(H (φs

B(x; D))) is the fourth-order elastic tensor of material at the point x, which is explicitly
ontrolled by the vector of design variables D.

.2. Sensitivity analysis

Taking a general objective function I into consideration, the variation with respect to the variation of the design
ariable d has the following form (assuming that the design domain’s regularity requirements and some smoothness
onditions of I are satisfied):

δ I =

∫
B

r (u(x), v(x)) δφs
B (x; δd) dV, (3.3)

where r (u(x), v(x)) denotes a functional of u(x) and v(x), u(x) and v(x) represent the primary and adjoint
displacement fields and satisfy u (x) = −v(x) in the concerned compliance minimization problem. The symbol
δφs

B (x; δd) denotes the variation of φs
B = φs

B(x; D) with respect to the variation of design variable d (i.e., δd).
Since φs

B (x; D) = φs
B(φs

S (x⊥; D)), we have δφs
B (x; δd) =

∂φs
B

∂φs
S

δφs
S (x⊥; δd). Note that the middle surface is

composed of NU patches (i.e., S =
⋃NU

k=1 Uk), we have

δφs
S (x⊥; δd) =

NU∑
k=1

∂φs
S (x⊥; δd) /∂φs

US
k
δφs

US
k

(x⊥; δd), (3.4)

with

δφs
US

k
(x⊥; δd) =

⎧⎨⎩
∂φs

Uk

(
x⊥; Dk)
∂d

δd, if x⊥ ∈ Uk (a)
(3.5)
0, if x⊥ /∈ Uk, (b)
11
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since φs
Uk

is defined by the TDF φs
U∗

k
through Eq. (2.11), we have

∂φs
Uk

(
x⊥; Dk)
∂d

=
∂φs

Uk

(
x⊥; Dk)

∂φs
U∗

k

(
x⊥; Dk) ∂φs

U∗
k

(
x⊥; Dk)
∂d

. (3.6)

Recalling that the TDF φs
U∗

k
is defined by the TDF φs

Mk
in parametric domain Mk through Eq. (2.10), i.e., φs

U∗
k
(x⊥;

Dk)
= φs

Mk

(
f ∗

k (x⊥); Dk), where f ∗

k :U∗

k → Mk is the conformal mapping obtained by the CCM technique and
the symbol Mk denotes the parametric domain corresponding to the patch U∗

k , we have

∂φs
U∗

k

(
x⊥; Dk)
∂d

=
∂φs

Mk

(
f ∗

k (x⊥); Dk)
∂d

. (3.7)

In Eq. (3.7), the computational method of ∂φs
Mk

(
f ∗

k (x⊥); Dk) /∂d is consistent with the MMC approach developed
or the flat 2D case [37]. It is worth noting that the numerical implementation of the above sensitivity analysis is
chieved based on finite element discretization in the physical domain.

. Solution techniques

Up to now, we have completed the task of constructing embedded components and characterizing the material
istribution of the thin-walled structure. However, there is still a gap between the definition mentioned above and
ractical computation. Specifically, for a given point x, it is difficult to determine the nearest point x⊥ on the surface
and to obtain the distance ω(x). To address these issues, we propose an offset-based solid mesh generation scheme

in this section. Additionally, we provide detailed explanations of the solution to the structural responses and the
DOF removal technique.

4.1. Offset-based solid mesh generation scheme

Considering the difficulty in solving Eq. (2.15) to find the projection point and determining the thickness
coordinate, this subsection proposes an offset-based solid mesh generation technology to numerically simplify the
task of computing TDF φs

B (x; D). Let S∆ = {V 0, F0} denote the triangulated mesh model of the surface S (S∆

an be generated from a CAD model or obtained from the result of 3D scanning), where V 0 = {vl
0|1 ≤ l ≤ nv}

epresents the set of nodes and vl
0 is the Cartesian coordinates of the lth node, and F0 = { f m

0 |1 ≤ m ≤ n f }

represents the set of elements and f m
0 = ( f m1

0 , f m2
0 , f m3

0 ) denotes the vertices’ indexes in the mth element. Taking
the mth element f m

0 for example (shown in Fig. 9(a)), its unit normal vector N f m
0

is determined as:

N f m
0

=
Lm1

0 × Lm2
0Lm1

0 × Lm2
0

 , (4.1)

where Lm1
0 = v

f m2
0

0 − v
f m1
0

0 and Lm2
0 = v

f m3
0

0 − v
f m2
0

0 represent two vectors defined by the edges of the element.
he first step to construct the solid mesh B∆ is generating nodes. Suppose the number of solid elements generated
long the thickness direction is 2ne, and the total thickness is t . Taking the lth node of the surface mesh as example,
olid elements’ nodes are generated according to the offset operation (shown in Fig. 9(b)):

vl
j = vl

0 + j ∗ N l
v ∗

t
2ne

, −ne ≤ j ≤ ne, (4.2)

here N l
v is the normal vector at the lth node. In classical differential geometry, suppose S = S(u, v) is a

arameterized differentiable surface, the unit normal vector at a specific point S(u0, v0) is defined as N (u0, v0) =

u(u0, v0) × Sv(u0, v0)/ ∥Su(u0, v0) × Sv (u0, v0)∥. Nevertheless, the continuity of the surface is destroyed in the
iscrete mesh. Hence, the so-called 1-ring neighborhood definition is utilized to extend the continuous definition to
iscrete situations [61]. Denote f 0l = { f m

0l |1 ≤ m ≤ nl
F } the set of elements that contains node vl

0, the unit normal
ector at this node is estimated as (shown in Fig. 9(c)):

N l
v =

∑
f m

0l∈ f 0l

⏐⏐ f m
0l

⏐⏐ N f m
0l∑ m

⏐⏐ f m
⏐⏐ N m

 , (4.3)

f 0l∈ f 0l 0l f 0l

12
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Fig. 9. Schematic illustration of the process of offset-based solid mesh generation scheme. (a) The definition of the unit normal vector of an
element. (b) Generating nodes according to the offset operation. (c) Normal vector definition at a node via the 1-ring neighborhood scheme.
(d) Generating nodes of the solid mesh (taking the positive normal direction as example). (e) Surface element generation. (f) Solid element
generation.

where N f m
0l

and
⏐⏐ f m

0l

⏐⏐ are the normal vector and the area of element f m
0l , respectively. Looping from l = 1 to nv

for every node, the nodes of the solid mesh are generated as demonstrated in Fig. 9(d). In addition, the elements
of the solid mesh are also obtained from the offset operation. Looping from m = 1 to n f for every element of the
original surface mesh, the j th layer surface element is defined as:

f m
j = f m

0 + jnv =
(

f m1
0 + jnv, f m2

0 + jnv, f m3
0 + jnv

)
, (4.4)

which means nodes in every layer preserve the topology connection relationships of the original surface mesh (shown
in Fig. 9(e)). Further, the j th layer solid element along the positive normal direction is defined as Pm

j = ( f m
j−1, f m

j ),
which is depicted in Fig. 9(f).

In conclusion, the solid mesh is organized as B∆ = VB, PB, where VB =

{
vl

j |1 ≤ l ≤ nv, −ne ≤ j ≤ ne

}
is the node set, and PB = {Pm

j |1 ≤ m ≤ n f , −ne ≤ j ≤ ne} is the element set. Based on the aforementioned
efinitions of the solid mesh, the barriers to determining the material distribution of the thin-walled structure (i.e., the
DF φs

B∆

(
vl

j ; D
)

), have been removed. More specifically, for each node vl
j , the nearest point to mesh surface S∆

s vl
0, which means the problem of solving the projection point has been transferred to the modification of subscripts.

.2. Structural response and discrete sensitivities

In the current work, structural responses are solved by the finite element method using the C3D6 element
a classical linear displacement solid element defined on the triangular prism) provided in ABAQUS [62]. The
rsatz material model [37] is introduced to calculate the stiffness matrixes of elements. Taking the eth element
1 ≤ e ≤ Ne) for an example, its stiffness matrix can be calculated as:

ke =

∫
B⊤ De BdV = ρe

∫
B⊤ Ds BdV, (4.5)
Ωe Ωe

13
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where the symbol Ωe denotes the domain occupied by the eth element, the symbol B represents the strain–
displacement matrix, and De = ρe Ds with ρe and Ds denoting the ersatz density and the constitutive matrix of the
solid material, respectively. In the present study, the ersatz density is interpolated as:

ρe =

6∑
i=1

Hα,ε

((
φs
B

)
e,i

)
/6, (4.6)

with

Hα,ϵ(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if x > ϵ,

3 (1 − α)

4

(
x
ϵ

−
x3

3ϵ3

)
+

1 + ϵ

2
, if |x | ≤ ϵ,

α, otherwise,

(4.7)

representing the regularized Heaviside function (ϵ = 0.1 and α = 10−3, respectively, in the present work).
In Eq. (4.6),

(
φs
B∆

)
e,i

denotes the value of φs
B∆

taken on the i th node of the eth element. In addition, the
abovementioned sensitivity analysis is calculated via the finite element discretization formulation. Specifically, the
sensitivity of the compliance function has the following form:

∂C
∂d

= −U⊤
∂ K
∂d

U = −

Ne∑
e

∂ρe

∂d
u⊤

e k0ue, (4.8)

with

∂ρe

∂d
=

6∑
i=1

∂ Hα,ε

∂
(
φs
B

)
e,i

∂
(
φs
B

)
e,i

∂d
/6, (4.9)

where U is the displacement field vector of domain B∆, K is the global stiffness matrix, k0 is the stiffness matrix
of solid element. In addition, the sensitivity of the solid volume fraction with respect to d is quite straightforward
and will not be discussed here. The following well-known K-S function [63] is utilized to approximate the
aforementioned max operator (i.e., Eqs. (2.5), (2.11), and (2.13)):

χ = max
(
χ1, . . . , χn)

≈ ln

(
n∑

i=1

exp
(
lχ i)) / l, (4.10)

where l is a relatively large positive number (e.g., l = 100).

4.3. DOF removal technique

Owing to the explicit description of structural boundaries under the MMC framework, the material distribution
in the present work exhibits clear binary behavior. During the optimization process, we utilize the DOF removal
technique [64] to enhance computational efficiency. This technique generates a narrow-band mesh model at each
iteration step, as illustrated in Fig. 10 (taking a single loading point as an example). Firstly, a loading test is
conducted to ensure that external force and displacement boundary conditions are applied to the structure. Secondly,
the loading path identification algorithm [65] is employed to distinguish between components that contribute to the
structure and those outside the structure (as shown in Fig. 10(b)). Thirdly, elements and corresponding nodes that are
covered by the components contributing to the structure are selected, forming a novel narrow-band mesh (as shown
in Fig. 10(d)) used for practical structural analysis. It is noteworthy that the DOF removal technique is similar to
the remeshing scheme as both rebuild the mesh model after each iteration. However, the DOF removal technique
has a lower cost of generating meshes. In addition, the narrow-band mesh model will not be influenced by grey
elements, which improves the accuracy of the solution.

5. Optimization procedures and technical remarks

As a summary of the technical section, the optimization procedures for designing thin-walled structures are
concluded as follows. These mainly contain three core steps, i.e., geometry preprocessing, layout of embedded

components, and conducting structure optimizations.
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Fig. 10. Schematic diagram of the DOF removal technique. (a) Original computational model. (b) Distinguish structural components
visualized in green) from unstructured components (visualized in orange) according to the loading path identification algorithm. (c) Removed
esh. (d) Narrow-band mesh generated from the DOF removal technique. . (For interpretation of the references to color in this figure legend,

he reader is referred to the web version of this article.)

To begin with, based on a given mesh surface S∆ (as an approximation of the middle surface S of the concerned
thin-walled structure), the corresponding solid mesh B∆ is generated, in which the boundary conditions are
applied. The mesh surface is divided into several patches, i.e., S∆ =

⋃NU
k=1 Uk . For each patch, the corresponding

intermediate surface U∗

k (a single simply connected open surface with genus zero) is generated through the surface-
cutting operation, and the conformal mappings fk : U∗

k → Mk, k = 1 to NU are obtained through the CCM
technique, where Mk represents the kth parametric domain.

In the second place, components Dk in each parametric domain Mk are placed to form the initial TDF
φs
Mk

( p; Dk). Further, the material distribution of the middle surface S is characterized by the TDF φs
S(x; D) through

Eqs. (2.10)–(2.13). By making use of the projection operation (i.e., Eqs. (2.14)–(2.16)), the embedded components
are laid out in the concerned thin-walled structure.

Once the embedded components are established, the FEA process integrated with the DOF removal technique is
invoked to estimate the structural responses and sensitivities, which are further submitted to the optimizer to update
design variables. These steps, together with the layout of components, are conducted iteratively until the convergence
criterion is satisfied. At last, the final design with clear load-transmission path and structure boundaries is obtained
at the cost of fewer design variables and degrees of freedom for FEA. To further explain implementation details,
some technical remarks are given below.

Remark 1. The sensitivity solutions are independent of the Jacobian matrix J between the points in physical space
and parametric domain, which significantly simplifies the calculation process.

Remark 2. The current method utilizes a triangulated surface mesh and a prism solid mesh for simplicity and
generality. However, other types of elements, including quadrilateral surface mesh, tetrahedra solid mesh, and

high-order elements, can also be incorporated into the framework.
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Remark 3. The embedded components can also be constructed using two outside surfaces instead of the middle
surface. This can be achieved by changing the Cartesian product form of the thin-walled structure to B = S× [0, t]

r B = S × [−t, 0], and applying the CCM technique to the outside surfaces.

emark 4. Another possible approach for constructing embedded components is through solid mapping, which
irectly maps the thin-walled structure to a three-dimensional parametric domain. However, this approach is
hallenging due to lacking an analogous mathematical structure of three-dimensional solid domains. [66].

emark 5. A crucial factor that should be considered when designing thin-walled structures is the thickness-to-
ength ratio, which affects transverse mechanical performances significantly. The current method is constructed
ased on solid elements, which makes it easy to handle thick structures. Nevertheless, the lower bound of thickness is
imited due to the computational burden. Assuming the maximum number of elements is about 1 million, considering
he limits of volumetric and shearing locking phenomena, the minimum thickness-to-length ratio recommended is
/200

. Numerical examples

This section demonstrates the effectiveness and efficiency of the proposed method through three representative
umerical examples with complex geometries. Moreover, it also investigates some key factors governing the design
esults of thin-walled structures, such as surface curvature, boundary conditions, and volume fraction. Without
oss of generality, material properties are set as dimensionless. Specifically, Young’s modulus and Poisson’s ratio
f the isotropic solid material are chosen as E = 1 and ν = 0.3, respectively. Triangulated prism elements are

adopted for finite element analysis in all examples. As the surfaces considered are mainly free-form and difficult
to describe by analytical expressions or three-view diagrams, the corresponding models have been made available
on the website [67] for interested readers. Unless otherwise stated, the upper bound of the volume fraction for
all numerical examples is 40%, and the DOF removal technique is employed. The method of moving asymptotes
(MMA) [68] is chosen as the numerical optimizer, and the optimization process terminates when the relative change
of each design variable, Tol, between two successive steps falls below a prescribed threshold (i.e., Tol = 0.0001).

6.1. The epicycloid-shaped thin-walled shell example

In this example, we examine the topology optimization problem of an epicycloid-shaped thin-walled structure
with a thickness of 0.5, as illustrated in Fig. 11. The boundary curve of Fig. 11(a) is described by parameterization
equations exactly as follows⎧⎪⎪⎪⎨⎪⎪⎪⎩

x1
= (a + b) ∗ cos (θ) −

1
n

∗ b ∗ cos((a + b) ∗
θ

b
), (a)

x2
= (a + b) ∗ sin (θ) −

1
n

∗ b ∗ sin((a + b) ∗
θ

b
), (b)

x3
= 0, (c)

(6.1)

where θ ∈ [0, 2π ] is the parameter coordinate, with a = 4, b = 1, and n = 2. In this example, the thickness-to-length
atio of the thin-walled structure is between 1/11 to 1/9. The surface mesh contains 69 290 elements and 34 982
odes, while the solid mesh is generated using the offset-base solid mesh generation scheme, with nine elements
long the thickness direction. The boundary conditions are presented in Fig. 11(b), where the corners are fixed, and
line load of magnitude 200 (since the length is 0.5, the magnitude of the resultant force is 100) is applied at the

enter point along the thickness direction, as seen in Fig. 11(b). Fig. 12 depicts the mapping process from the middle
urface to a standard parametric domain and the initial distribution of 72 components in the thin-walled structure.
ig. 13 shows the optimization iteration histories, indicating that the structure compliance becomes stable and finally
onverges to Copt

= 5.34 at about the 160th step, after oscillations in previous steps. Additionally, Fig. 13 presents
ome intermediate optimization results, illustrating that some components gradually form the main load-bearing
tructure between the loading point and the fixed ends, while others fade away as the iteration proceeds. Finally,

ig. 14 displays the final design, with a result similar to topology optimization of membrane structures.
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e
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Fig. 11. Problem settings of the cycloid-shaped thin-walled structure. (a) Generating the solid mesh (right) from the middle surface mesh
(left). (b) Displacement and external load conditions of the cycloid-shaped thin-walled structure (The external load is a line load (right)
applied at the center point along the thickness direction).

Fig. 12. Initial settings of the epicycloid-shaped thin-walled structure. (a) Conformal mapping of the middle surface of the epicycloid-shaped
thin-walled structure. (b–d) Initial layout of components in (b) parametric domain; (c) middle surface; (d) solid domain.

In order to investigate the influence of curvatures on the final designs, the coordinates of the middle surface of
the thin-walled structure are adjusted using the following equation:

x3
= γ ∗

((
x1)2

+
(
x2)2

)
, (6.2)

where the parameter γ controls the curvature. Fig. 15 presents the parameter settings considered in the current
xperiment. The solid mesh generation process is omitted, and the boundary conditions are set the same as in
ig. 11(c), i.e., the corners are fixed, and the center point is subject to a line load. Fig. 16 shows the optimized
17
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Fig. 13. Iteration histories and intermediate results of the epicycloid-shaped thin-walled structure.

Fig. 14. Optimized design of the epicycloid-shaped thin-walled structure (Copt
= 5.34). (a) Top view. (b) Side view.

Fig. 15. Illustration of modifications of the middle surface. From case 1 to 6, the parameter γ is set as 0, 0.025, 0.05, 0.10, 0.15, 0.30,
espectively.

esults. Case 1 and case 2 differ slightly in curvature, but this difference leads to an abrupt shift of the load-
ransmission mechanisms and ultimately results in different optimized structures. For case 1, the structure resists
he external loading mainly via out-of-plane bending and transverse shearing (the in-plane stress is negligible due

o the flat geometry). While for case 2, the slight change in curvature arches the structure, significantly increasing
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Fig. 16. Comparison of final designs of different curvatures.

the usage extend of in-plane stiffness and the proportion of deformation energy of internal forces along the surface
direction. Result 2 and result 3 have similar material distributions, but the compliance functions differ considerably
due to the curvature, which is related to the Geometry-Induced Rigidity (GIR) effect [69–71]. Therefore, optimizing
thin-walled structures’ shape and topography can also improve structural performance. From result 3 to result
4, the difference in configuration comes from not only the change of proportion of different types of strain
energies (shearing, membrane, and bending) but also possibly from the bifurcation phenomenon [72] in structure
optimization, i.e., the solution is unstable at the bifurcation point, and the parameter change of problem settings
may cause a sudden change of configuration of final design. In results 4–6, the final designs form ring structures
in the middle zones, effectively enhancing the stiffness of whole structures. Numerical examples proved that the
connections between four legs are more efficient for high dome structures than low dome structures under the current
boundary conditions.

In this example, we also compare the optimized results obtained from a shell-based approach [8] with those
obtained from the solid-based approach to demonstrate the ability of solid meshes to handle mechanical details in the
thickness direction. Firstly, we verify the correlation between the two methods. Fig. 17(a) depicts a shell model with
the same geometry as case 2 in Fig. 15(b), where the corners are fixed, and a vertical force with a magnitude of 100
is applied at the central point. The final design of the shell-based approach is shown in Fig. 17(b), which is similar
to the result obtained from the solid-based approach (shown in Fig. 16(b)). The relative error of the compliance
function is approximately 0.515%. Based on these results, one may conclude that the solid-based method can be
replaced by the shell-based method. However, the next experiment refutes this point of view. Fig. 17(c) displays a
model with the same geometry and external load conditions as result 2 in Fig. 16(b), while the fixed boundaries are
changed to four points at the bottom surface (which is out of the middle surface). The optimized result is presented
in Fig. 17(d), where the final design forms a circular outline and bifurcated bars, instead of directly connecting the
loading point and the fixed points.

It should be noted that the aforementioned example (as depicted in Fig. 17) cannot be accurately conducted
using shell-based methods due to that the shell model is constructed based on the so-called middle-surface modeling
hypothesis. This is a common issue faced by many similar shell-based methods. In contrast, the proposed framework
utilizes solid meshes, eliminating the aforementioned problems. However, the use of solid meshes may result in
a heavy computational burden, which is addressed in this study by employing the DOF removal technique. To
demonstrate the effectiveness and accuracy of this technique, we compare the optimized results with and without
the technique using the same geometry and boundary conditions as result 2 in Fig. 16(b). The results show that
the average time for FEA is reduced from 118.46 s per step to 65.26 s per step (a decrease of 44.91%) without

compromising the optimized structures, as seen in Fig. 18.

19



W. Huo, C. Liu, Y. Liu et al. Computer Methods in Applied Mechanics and Engineering 417 (2023) 116431

i

Fig. 17. Comparison of the shell-based approach and the proposed approach. (a) Boundary conditions applied in the shell-based approach.
(b) Final design (Copt

= 1.93) of the shell-based approach. (c) Boundary conditions applied in the solid-based approach, which is out of
the middle surface. (d) Final design (Copt

= 8.12) of the solid-based approach.

6.2. The bottle-shaped thin-walled structure example

In the second example, a revolving bottle with a bottom is considered, as depicted in Fig. 19. The primary
geometric information of the bottle model is shown in Fig. 19(a), in which the total height is 178.8, the maximum
diameter is 60.6, and the diameter of the bottleneck is 21.1. Since this surface is free-form, which means no
analytical expressions analogous to Eq. (6.1) are available, the relevant models can be found in [67]. Initially,
a solid mesh is generated from the surface mesh. The solid mesh contains 117 040 elements and 58 568 nodes, with
a thickness of 4 and 6 elements along the thickness direction. Fig. 19(b) illustrates the boundary conditions, where
three concentrated forces with the same magnitude (|F1| = |F2| = |F3| = 100) and direction are applied on the
middle circle of the bottle (depicted in grey), while the top and bottom edges (illustrated in orange) are clamped.

For such a revolving bottle, the CCM technique can be conducted in different ways. The simplest method is to
directly map the surface to a planar parametric domain using the single-patch approach. Alternatively, the surface can
be divided into two parts: the bottom can be mapped directly to a parametric domain, while the body surface can be
mapped to another after performing the surface-cutting operation. The effects of different mapping strategies can be
visually explained through component layouts. Fig. 20(a–c) demonstrates the process of component layouts via the
single-patch mapping approach, where the bottleneck (shown in red) is mapped to the boundary of the rectangle
domain (displayed in Fig. 20(b)). The components are laid in the parametric domain (also shown in Fig. 20(b))
and then mapped to the original structure. However, Fig. 20(c) illustrates that even if this single-patch mapping is
bijective and preserves topology, the component layouts of the concerned thin-walled structure are severely twisted
due to the enormous and inevitable distortions of the global mapping process.

As depicted in Fig. 20(d–f), the body surface of the bottle is segmented by a cut along the red line before
being mapped to the parametric domain (Fig. 20(e)). The resulting multi-patch-based component layouts are shown
in Fig. 20(f), where the components’ configurations are identifiable (for illustration, components are not laid in
the bottom part). The multi-patch stitching scheme preserves the fidelity of geometry modeling and the structure’s
load-bearing performance, and meanwhile significantly reduces the distortions of global mappings under the single-
patch framework. Therefore, the CCM strategy illustrated in Fig. 20(d–f) is utilized in subsequent bottle designs.
As shown in Fig. 21, the initial component layout is set to 3 × 6 cells. The optimization process’s iteration histories
are plotted in Fig. 22, from which it is evident that the compliance function converges rapidly to a flat value. At
the 30-th step, the main load-bearing structure has formed clearly, and the subsequent optimization process focused
on adjusting small components to fine-tune the structure’s stiffness.

The final design, with compliance of Copt
= 0.6462, is presented in Fig. 23. The top view of the design shows that

t is composed of three types of hierarchical components, each with a distinct function for resisting the concentrated
20
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Fig. 18. Optimized results with and without the DOF removal technique.

Fig. 19. Geometry and boundary conditions of the bottle-shaped thin-walled structure example. (a) Middle surface model. (b) Solid model
and boundary conditions. . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
21



W. Huo, C. Liu, Y. Liu et al. Computer Methods in Applied Mechanics and Engineering 417 (2023) 116431

a
t
(

f

c
a
o
t
d
v

c

Fig. 20. Comparison of component layouts via a single-patch-based global mapping (a–c) and the multi-patch stitching scheme (d–f). (a)
nd (d) Middle surface models. (b) and (e) Components laid in the parametric domains. (c) Component layouts are severely twisted due to
he global mapping process. (f) Component layouts preserve the fidelity of geometry modeling owing to the multi-patch stitching scheme. .
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 21. Initial layout of components. (a) In the parametric domain. (b) On the original thin-walled structure.

orce. As demonstrated in Fig. 23(a), the load-bearing components (in red) form a platform at the loading point of
F1 (marked by the blue cross) to bear the external load, hence these components are categorized as load-bearing
omponents. However, since the loading point is far from the fixed end, the bridging components (in golden) are
ssembled to this platform to transfer the load to the fixed end, forming the main load-transmission path (instead
f a mechanism). In addition to these, the final design includes a series of reinforcing components (in grey, the
hird category) that enhance the stiffness and stability of the whole structure. These components are primarily
istributed between different bridging components, forming several triangular substructures. In Fig. 23(b), the side
iew of the final structure illustrates the effects of concentrated force F2, which is applied along the tangential

direction of the surface. The load-bearing components (in red) form a claw-shaped substructure to grab the transverse
bridging components (in golden) and resist the shear strain around the loading point. As can be seen from the above
results, the proposed MMC-based framework has multiple advantages, including clear boundaries of the optimized
structures, no grey elements involved, and components with specific mechanical meanings, which is critical for
helping engineers understand and interpret the final design.

In this example, the impact of various initial component layouts on optimized results is also examined. As
depicted in Fig. 24, different component layout settings were used, where all component layouts of the bottom part
are set as 2 × 2 cells, and the component layouts of the body part are set as 3 × 6 cells, 4 × 8 cells, 5 × 10
ells, and 7 × 14 cells, respectively, from left to right. Fig. 25 presents the final designs of each setting, revealing
22
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Fig. 22. Iteration histories and intermediate results of the bottle-shaped thin-walled structure.

Fig. 23. Final design of the bottle-shaped thin-walled structure example is composed of three categories of hierarchical components with
ifferent functionalities (Copt

= 0.6462). (a) Top view. (b) Side view. . (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

Fig. 24. Initial layouts of components with different parameter settings.

that the primary load-bearing structures and the compliance function are relatively similar across all the layouts.

However, more details, such as reinforcing components, are added to the final design as the component layout is
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Fig. 25. Final designs of different initial layouts.

refined. Therefore, we suggest that the current method can use optimization results with a small number of initial
components to construct the main force transmission path, and optimization results with a higher number of initial
components can be used to achieve more detailed designs.

Moreover, designing rib-reinforced structures is a crucial aspect of thin-walled structure design, and it can be
readily achieved in the current framework. In this example, we present the results of optimizing rib reinforcement
structures for two settings. As shown in Fig. 26, the initial components layout is shown as 4 × 8 cells, with the
thickness of the base plate (in grey) set to 2, i.e., half of the overall thickness. Fig. 27(a) and (c) depict different
design results of rib reinforcement structures, with Young’s modulus of the base plate set to 0.2 and 0.7 and the
volume fraction of the stiffener set to 0.225 and 0.10, respectively. Fig. 27(b) and (d) present the optimization results
for the two settings. As shown in Fig. 27(b), the load-bearing capacity of the base plate is relatively weak, which
results in a similar layout of the stiffeners to the results of topology optimization (i.e., Fig. 25(b)). In contrast, the
material volume fraction is much smaller in the second setting, resulting in a clear path for the stiffeners, as shown
in Fig. 27(d).

6.3. The tee-branch pipe example

The final example considers a tee-branch pipe model to demonstrate the applicability of the proposed algorithm
to practical engineering structures. Fig. 28(a) illustrates the primary geometric information of the middle surface
model. As shown in the figure, not only the topology of the tee-branch pipe is complex, but also each pipe branch
has a specific shape. This surface is also a free-form surface and the file of the corresponding geometry model
is provided in [67]. Fig. 28(b) displays the solid mesh generated from the middle surface with a thickness of 2
and 8 elements along the thickness direction, along with the external loads and displacement boundary conditions.
Considering the difficult in parameterizing the surface directly, a multi-patch stitching scheme is used, as shown
in Figs. 29 and 30. The original surface is partitioned into four patches according to geometric features (shown
in Fig. 29), and the fourth patch is sewn with a circle domain (in grey) to form a topological cylinder, as shown
in Fig. 30. For each patch, the surface-cutting operation is used to obtain an intermediate surface, which is then
used to obtain the corresponding parametric domain. With these treatments employed, conformal parameterizations

are constructed for these four patches, and the global TDF on the tee-branch pipe is constructed as described in
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Fig. 26. Problem settings of rib-reinforced structure design. (a) and (b) The layout of components is set as 4 × 8 cells; (c) The thickness
of the base panel is set as half of the whole thickness.

Fig. 27. Two representative designs of rib-reinforced structures. (a) Optimized result with the base panel of the first parameter setting
Copt

= 1.25). (b) Optimized results without the base panel of the first parameter setting. (c) Optimized result with the base panel of the
second parameter setting (Copt

= 0.54). (d) Optimized results without the base panel of the second parameter setting.

ection 2. Fig. 31 displays the initial component layout and material distribution for each patch on the thin-walled
tructure. Fig. 32 illustrates iteration histories and shows that the optimization process terminates after 160 iteration
teps. Due to the advantage of a few design variables under the MMC framework, the main load-transmission path
s obtained after the 40th step, resulting in a final design with Copt

= 43.38, as presented in Fig. 33. The layout
of components on two loaded pipes is similar to the well-known 2D short beam example [73]. Moreover, four
different boundary conditions are applied to the tee-branch pipe to investigate their effects on the final designs,
25
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Fig. 28. Geometry and boundary conditions of the tee-branch pipe example. (a) Middle surface model. (b) Solid model and boundary
conditions.

Fig. 29. Partitioning the original surface into four patches.

as shown in Fig. 34(a–d). The corresponding optimized results are demonstrated in Fig. 34(e–h). From Case 1 to
Case 2, the magnitude of the concentrated forces applied to the left pipe is reduced by half. This change led to
a slight modification in the design result for the two loaded pipes and a completely different configuration near
the fixed end. One possible explanation is that the fixed pipe acts as a barrier, impeding the transmission of loads
between the lower two pipes. As a result, the concentrated forces only affect the localized distribution of strain
energy. Conversely, the two loaded pipes transfer their loads to the fixed end through the fixed pipe. Consequently,
variations in the magnitude distribution of concentrated forces lead to different bending moments in the fixed pipe,
ultimately resulting in distinct design configurations. Additionally, in Fig. 34(g), the final design of the right pipe
is similar to that of the top pipe, possibly due to the same boundary condition at the fixed end. The final design of
the left pipe in Fig. 34(h) is relatively weak, which can be attributed to the offsetting effect of bending moments.

Finally, the sandwich-type reinforced structure design is considered in this example, where the same boundary
conditions are applied as in Fig. 28(b), and the initial component layout is the same as in Fig. 31. As illustrated in

Fig. 35, the thickness of the outer and inner layers (considered as the undesigned domain) is 0.5, while the thickness
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Fig. 30. Parameterization of each patch.

of the designed layer is 1. Three numerical examples with different parameter settings are examined. In each case,
the volume fractions are set as 0.375, 0.45, and 0.55, and Young’s modulus of the undesigned layers is set to 0.15,
0.3, and 0.5, respectively. Young’s modulus of the designed layer is set to 1 in all cases. The optimization results
are displayed in Fig. 36(a)–(c), it is found that the optimized results mainly consist of sheet structures and truss
structures, which cannot be modeled using shell models.

7. Conclusions and extensions

This article proposes a novel approach based on the MMC method for optimizing complex thin-walled structures,
in which the embedded solid components are employed to construct a general description of thin-walled structures.
The middle surface of the thin-walled structure is mapped to a standard parametric domain using the CCM technique
to characterize material distribution. By integrating the surface-cutting operation and the multi-patch stitching
scheme, the proposed algorithm can handle thin-walled structures with complex geometries and significantly reduce
numerical instabilities caused by the mapping process. Numerical examples demonstrate that this method has
attractive properties of requiring few iterations and achieving fast convergence. The proposed approach obtains
structures with clear boundaries at the cost of few design variables and degrees of freedom of finite element analysis
(FEA).

Compared to existing shell model-based approaches, the proposed method has several advantages. Firstly, the
solid model is not limited by the assumptions made by shell models, making the current method applicable
to structures of any thickness. Secondly, the proposed method can handle boundary conditions and material
distribution along the thickness direction naturally. Finally, solid meshes ensure precise structural responses, which

is crucial for practical structural optimization results. Nevertheless, the current solid-mesh-based framework has an
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Fig. 31. Initial component layout of the tee-branch pipe thin-walled structure.

intrinsic computational burden. Hence, we intend to solve it by combining state-of-the-art efficient computational
techniques [74] in future works.

Notably, the current work’s primary purpose is to propose a general framework for various design problems of
thin-walled structures. Hence specific details of different scenarios are not considered, e.g., how to control the sizes
of reinforced ribs on the curved surface and how to incorporate the constitutive relations of composite materials
into the designs of sandwich structures. These topics are both of excellent engineering and scientific value but also
very challenging. In addition, this method can be extended to other issues such as dynamics, acoustics, and thermal.
Corresponding research results will be reported in separate works.
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Fig. 32. Iteration histories and intermediate designs.

Fig. 33. Optimized result (Copt
= 43.38).
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Fig. 34. Final designs with different boundary conditions.

Fig. 35. Thickness settings of the sandwich-type reinforced structure design.

Appendix

In this section, an example is provided to assist comprehending the Computational Conformal Mapping technique.
As an example, the surface shown in Fig. A.1(a) can be generated via the following parameter equations⎧⎪⎪⎨⎪⎪⎩

x1
= (u + 1) ∗ cos (θ) ,

x2
= (u + 1) ∗ sin (θ) ,

x3
= θ,

(A.1)

where u ∈ [1, 3] and θ ∈ [0, 6π ] are the parameter coordinates. To describe components on this surface, the ensuing

steps need to be followed.
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Fig. 36. Final structures of the designed domains in the sandwich-type reinforced structure. From (a) to (c), the volume fractions are set as
.375, 0.45 and 0.55, and the Young’s modulus of the undesigned layers are set as 0.15, 0.3, 0.5, respectively.

Step 1: Mesh Generation. The mesh model comprising nodes and elements is generated as depicted in
ig. A.1(b). Notably, the proposed approach can employ surfaces reconstructed through 3D scanning techniques,

hereby economizing on geometry model generation and mesh creation costs.
Step 2: Disk Initialization. The mesh model is initially mapped to a planar disk domain as part of the

initialization process (as shown in Fig. A.1(c)), achieved by solving a surface Laplacian equation [60].
Step 3: Conformality Correction. To address potential angular distortion and mesh overlapping, we employ the

Linear Beltrami Solver (LBS) scheme [57–59] for rectifying conformal distortion and non-bijectivity, as depicted
in Fig. A.1(d). Steps 3 and 2 collectively constitute the procedure for computing a conformal mapping from the
pertinent surface to a planar rectangular parametric domain.
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Fig. A.1. Implementation illustration of the computational conformal mapping technique. (a) The original surface. (b) Generating the mesh
model. (c) Initialization by mapping the discrete mesh model to a planar disk. (d) Conformality correction via the Linear Beltrami Solver
(LBS) scheme. (e) Component layout in the parametric domain. (f) Surface component layout via the inverse mapping.

Step 4: Component Mapping. With the acquisition of the rectangular parameter region, component layout
ecomes straightforward, accompanied by computation of the corresponding topological description function, as
epicted in Fig. A.1(e). Subsequently, through the inverse mapping process, the component description on the
riginal surface is actualized, as illustrated in Fig. A.1(f).

For more detailed implementation details on computing conformal mappings, the reader is referred to the
iterature [57–60].
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