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a b s t r a c t

Up to now, the isogeometric boundary element method (IGBEM) has been widely applied
in different fields, and the solved problems are basically independent of time. But an
excellent numerical method is more than that, so it is necessary to explore a new IGBEM
which can solve time-domain problems. Based on this, the isogeometric dual reciprocity
boundary element method (IG-DRBEM) is proposed to solve transient heat transfer
problems with heat sources. The introduction of the dual reciprocal method enables the
IGBEM to solve the transient heat transfer problem conveniently. At the same time, it
does not need to divide elements within the domain, which maintains the advantage of
the IGBEM. First, the boundary domain integral equation is established by the weighted
residual method and the field variables are discretized by NURBS basis functions. Then,
the domain integral in the integral equation is transformed into the boundary by the
classical dual reciprocity method. Finally, the standard first-order ordinary differential
equations are formed. In order to examine the accuracy of the proposed method, several
typical numerical examples are discussed carefully. The presented method can provide
a new idea for solving time-dependent problems by IGBEM.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The boundary element method (BEM) was introduced several decades ago as a highly accurate numerical method
or solving boundary integral equations. The main advantage of the BEM in comparison with the finite element (FEM)
nd other domain type methods is the fact, that in absence of body forces the governing equations are formulated
n the boundary only and therefore only discretization of the boundary is required. According to the division of time,
he development of BEM can be roughly classified as the three stages such as the tradition BEM, the BEM that solving
arge-scale problems such as the fast multipole BEM, and the presented isogeometric BEM (IGBEM) stage.

The BEM has been successfully applied to a wide range of problems. Earlier studies include crack problems [1],
ater wave problems [2], electromagnetic field problems [3], dynamic analysis [4], thermo-fluids and acoustics field
roblems [5]. Although the dimensionality of the problem in the BEM is reduced by one in comparison with the FEM
nd less degrees of freedom are required to achieve the same accuracy of the solution, the computational cost of the
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BEM is often higher than that of the FEM. High computational cost is associated with the properties of the main matrix,
which in the BEM is dense and non-symmetric, even the computation process will be interrupted for the large scale
problem. Fortunately, the emergence of the fast multipole BEMmakes the BEM possible to solve large-scale problems [6,7].
Many BEM researchers adopted the fast multipole expansion technique to solve the three-dimensional crack problems [8],
the potential problems [9], the three-dimensional acoustic wave problems [10], the rigid-inclusion problems of carbon
nanotubes [11] and others. The fast multipole BEM can be regarded as the promotion of the computational speed and
solving scale by means of the fast multipole expansion scheme. In addition, the adaptive cross approximation [12] is
also the common acceleration method. To some extent, the introduction of these acceleration methods also expands the
application scope of BEM.

However, all of these studies need to convert the CAD model into suitable elements for numerical analysis. Generally,
he pre-processing may take up the majority of the analysis time. Based on this, in 2005, the iso-geometric analysis
IGA) was proposed by Hughes et al. [13] with the aim to use Computer-Aided Design (CAD) geometries directly for
umerical analysis. Geometries in CAD are parameterized by spline basis functions which can be used as shape functions
o discretize the weak form in the FEM or the integral equation in the BEM (approach known as IGBEM). Recently, someone
ntroduced the idea of isogeometric analysis into other methods and formed many new numerical methods such as
he isogeometric collocation method [14], the isogeometric meshless finite volume method [15], the scaled boundary
sogeometric finite element method [16,17] with transient heat transfer [18]. First implementation of IGBEM with NURBS
as demonstrated in [19] for 2D elasticity. Then in 2013, Scott et al. [20] developed IGBEM by using unstructured T-
plines. Further, Peake et al. [21] proposed the extended isogeometric boundary element method (XIBEM) to solve the
wo-dimensional Helmholtz problem. To solve the large-scale problem, Takahashi and Matsumoto [22] introduced the
ast multipole method (FMM) into IGBEM for Laplace equation. Recently, Chen et al. [23] applied the isogeometric fast
ultipole boundary element method to solve the 2D half-space acoustic scattering problems. Dolz et al. [24] proposed

he fast IGBEM based on the FMM to analyze three-dimensional electromagnetic scattering problems.
In general, the coefficient matrix generated by the boundary element method is asymmetric. However, the symmetric

alerkin boundary element method (SGBEM) [25] can generate symmetric coefficient matrix, which can save calculation
ost to some extent. In 2016, the isogeometric SGBEM (IG-SGBEM) has been proposed to solve the Laplace problem [26]
nd the crack problem [27]. Recently, Aimi et al. [28] based on B-splines adopted the IG-SGBEM to analyze 2D elliptic
odel problems.
More recently, Peng et al. [29] applied IGBEM to analyze three-dimensional static fracture and fatigue crack growth

roblems. Gong et al. [30] developed IGBEM to solve three-dimensional potential problems, where the calculation of
ingular integral is detailedly discussed. In 2018, An et al. [31] utilized the IGBEM to analyze the two-dimensional steady
eat transfer problem. Generally, NURBS can be used to accurately describe the geometric shape and only a few degrees
f freedom are needed, especially for the unknown quantities of BEM, so IGBEM can easily solve the shape optimization
roblems. As mentioned the paper from Lian et al. [32], there is no need for mesh generation and CAD model recovery
hen the shape optimization is carried out by IGBEM. Because the optimization variable is coordinates of control points,
he entity model of the optimization object or the production of the product can be directly carried out at the end of
he shape optimization. In addition, IGBEM is also adopted to optimize the shape of the structure in three-dimensional
coustic problems [33]. In 2020, Sun et al. [34] and Wu et al. [35] adopted IGBEM to solve the 3D elastic inclusion problems
nd the 3D acoustic problem, respectively. Fang et al. [36] used IGBEM with the time-dependent fundamental solution to
nalyze the transient heat transfer problem. Beer et al. [37] published a book about IGBEM, which involves many extensive
spects, such as the establishment of boundary integral equations, the basic knowledge of IGA, the extraction of geometric
nformation of CAD and some applications of IGBEM.

It has been nearly 15 years since the development of IGA, and many open source code of IGAFEM and IGBEM have
merged [38] such as open source C++ IGA library Gismo [39], an open source IGA Matlab code was described in [40]
ith a restriction to 2D scalar PDEs. An excellent open source IGA code was written in Matlab [41]. An object-oriented
++ combining IGA with FEM code was discussed in [42]. An IGABEM code written in Matlab was introduced in [43]. An
++ library (Bembel) featuring higher order isogeometric Galerkin boundary element methods for Laplace, Helmholtz, and
axwell problems was presented in [44].
Note that these problems analyzed by the above IGBEM basically belong to time independent. A valuable numerical

ethod should not be limited to the analysis of steady-state problems. In this paper, the transient heat transfer problem
ill be solved by IGBEM.
IGBEM is known for high accuracy due to the exact representation of the boundary geometry by splines, and it also

nherits all main features of the BEM. However, some major challenges limit application of the BEM to a narrow class
f problems. One of the challenges is associated with the presence of domain integrals in problems with sources or
ime terms. In such cases, the volume or surface mesh needs to be created and the approach loses its advantage of
eing the ‘‘boundary-only’’. Therefore, it is desired to transform domain integrals into the equivalent boundary integrals.
ased on this, many scholars proposed some effective transformation methods of domain integrals. For example, in 1982,
ardini and Brebbia [45,46] introduced firstly the dual reciprocity method (DRM) into BEM and formed the famous dual

eciprocity BEM (DRBEM). The emergence of DRBEM makes it possible for BEM to analyze various transient or nonlinear
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problems [47]. Up to now, DRBEM has been widely used to solve the nonlinear diffusion problem [48], the dynamic
analysis [49], the thermal wave propagation in biological tissues [50], the anisotropic dynamic crack problem [51],
the magneto-thermo-viscoelastic problems of rotating functionally graded anisotropic plates [52], the axisymmetric
thermoelastostatic analysis of nonhomogeneous materials [53], the transient heat transfer problem [54–57], the coupled
burgers’ equations [58], the elastoplastic problem [59] and so on. After 20 years of proposing DRBEM method, in 2002,
another famous domain integral transformation method which is called as the radial integration method (RIM) was
proposed by Gao [60]. Coupling RIM and BEM to form the radial integration BEM (RIBEM), up to now, RIBEM has been
widely used to solve dynamic problems of anisotropic plates [61], heat conduction problems [62–64], Fracture analysis of
functionally graded materials [65], dynamic coupled thermoelastic problems [66], one-phase solidification problems [67]
and so on. RIM adopts the pure mathematical treatments to transform domain integrals into boundary integrals. However,
the approximate processes of the two domain integral transformation methods for solving some problems are similar.
For example, the unknown function term is approximated by radial basis functions. Compared with RIM, DRM is easier
to implement and operate. Also, DRBEM has been realized in the famous BEM business software BEASY. In this work,
we couple DRM with IGBEM (approach abbreviated as IG-DRBEM) for problems of transient heat conduction with heat
sources. To the authors’ knowledge, up to date, it is the first implementation of IG-DRBEM in the literature.

The paper is organized as follows. The B-spline and NURBS functions are described in Section 2. The definition of
roblem is introduced in Section 3. The isogeometric dual reciprocity BEM is elaborated in Section 4. Then, several
umerical examples are discussed in Section 5. Finally, the main findings of the present work are summarized in Section 6.

. Non-Uniform Rational B-Splines (NURBS)

NUBRS are commonly used in CAD to describe curves and surfaces. Here we briefly recall the main definitions. First, a
not vector is defined as a non-decreasing sequence of coordinates in the parametric space:

Ξ =
{
ξ1, ξ2, . . . , ξn+p+1

}
(1)

where n and p denote the number and the degree of the basis functions. Typically, an open knot vector is assumed, for
which knots ξ1 and ξn+p+1 are repeated p + 1 times. Non-zero knot spans [ξi, ξi+1] are referred to as elements. B-Splines
basis functions Na,p(ξ ) are defined recursively as follows:

Na,0 =

{
1 ξa ≤ ξ < ξa+1
0 otherwise (2)

and for p ≥ 1

Na,p(ξ ) =
ξ − ξa

ξa+p − ξa
Na,p−1 (ξ) +

ξa+p+1 − ξ

ξa+p+1 − ξa+1
Na+1,p−1 (ξ) (3)

NURBS are defined as

Ra,p (ξ) =
Na,p (ξ) wa∑n
i=1 Ni,p (ξ) wi

(4)

where wi is the weight associated with the ith basis function. If all weights are equal, NUBRS reduce to B-Splines. Therefore,
B-Splines are considered as a special case of NURBS.

NUBRS curve x(ξ ) = (x(ξ ), y(ξ )), defined by n control points xa = (xa, ya), is parameterized as follows:

x (ξ) =

n∑
a=1

Ra,p (ξ) xa (5)

3. Problem definition

In what follows, we consider a two-dimensional bounded domain Ω (Ω ∈ R2) with boundary Γ = ∂Ω , occupied by
he isotropic material with constant material parameters. The governing equation for transient heat conduction can be
xpressed as

k∇2T (x, t) + g(x, t) = ρc
∂T (x, t)

∂t
, x ∈ Ω (6)

where x = (x1, x2) is a generic point in Ω , ∇2 is the Laplace operator, T (x, t) is the temperature at the point x at time t ,
g x, t is a known heat source function, k is the thermal conductivity, ρ is the density and c is the specific heat.
( )

3
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The initial condition is given by

T (x, 0) = T0(x) (7)

where T0(x) is a prescribed function. In this paper, two types of boundary conditions are considered, namely

T (x, t) = T (x, t) , x ∈ Γ1 (8)

and

−k
∂T
∂n

= q (x, t) , x ∈ Γ2 (9)

where Γ1 ∪ Γ2 = Γ , Γ1 ∩ Γ2 = ∅, n is a unit outward normal to Γ , T (x, t) and q(x, t) are the prescribed temperature
nd the heat flux histories on the corresponding parts of the boundary, respectively.

. Isogeometric dual reciprocity BEM

To some extent, the introduction of IGBEM theory can be divided into two parts. One is the introduction of conventional
oundary integral equation and giving the discretized forms. The other part is to replace the original shape function
ith NUBRS basis functions. Similarly, we will introduce firstly the DRBEM theory, then, adopt NURBS basis functions to
iscretize the boundary integral equation with DRBEM.

.1. Dual reciprocity boundary integral equation

To facilitate the use of dual reciprocity method, Eq. (6) is first rewritten as

∇
2T (x, t) = b(T (x, t), x, t) (10)

here

b(T (x, t), x, t) =
1
λ

∂T (x, t)
∂t

−
g(x, t)

k
(11)

n which λ = k/ρc . The right hand side of Eq. (10) is subsequently approximated by a set of Nt functions {fj(x)}Nt
j=1 and

he corresponding time-dependent coefficients {αj(t)}
Nt
j=1 as

b(T (x, t), x, t) =

Nt∑
j=1

αj (t) fj (x) (12)

here for each function fj(x) there exists a function T̂j(x) such that ∇
2T̂j(x) = fj(x). Various choices of functions fj(x) have

een investigated in the literature [45]. In this work, we adopt the polynomial function of distance rj =
x − xj

 to point
j inside or on the boundary of domain Ω:

fj(x) = 1 + rj + r2j + · · · + rmj (13)

hen

T̂j(x) =
r2j
4

+
r3j
9

+ · · · +
rm+2
j

(m + 2)2
(14)

n what follows, we will also need

q̂j(x) =
∂ T̂j(x)
∂n

=

(
rx1

∂x1
∂n

+ rx2
∂x2
∂n

)(
1
2

+
rj
3

+ · · · +
rmj

m + 2

)
(15)

here rx1 and rx2 are the x1- and x2-components of rj.
Eq. (10) can be multiplied by the fundamental solution of stead state heat conduction problems T ∗ and integrated over

he domain, producing∫
Ω

(
∇

2T (x, t)
)
T ∗dΩ =

Nt∑
j=1

αj(t)
∫

Ω

(
∇

2T̂j(x)
)
T ∗dΩ (16)

where T ∗
=

1 ln
( 1 )in 2D, r =

x − x′
.
2π r

4
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Fig. 1. The domain created using NURBS.

Table 1
Element connectivity information.
Number of element Node 1 Node 2 Node 3

1 1 2 3
2 3 4 5
3 4 5 6
4 6 7 8
5 7 8 9
6 9 10 11
7 11 12 13
8 13 14 15
9 14 15 16
10 16 17 18
11 18 19 1

Integrating Eq. (16) by parts, for any source point x′
∈ Γ , the integral equation without domain integrals is derived

C
(
x′

)
T

(
x′, t

)
+

∫
Γ

T (x, t) q∗
(
x′, x

)
dΓ −

∫
Γ

q (x, t) T ∗
(
x′, x

)
dΓ

=

Nt∑
j=1

αj(t)
[
C

(
x′

)
T̂j

(
x′

)
+

∫
Γ

T̂j (x) q∗
(
x′, x

)
dΓ −

∫
Γ

q̂j (x) T ∗
(
x′, x

)
dΓ

] (17)

where C
(
x′

)
is a jump term in which it can be obtained similar to the conventional BEM [46], q∗ is the normal derivative

f which along the boundary Γ and q∗
= ∂T ∗/∂n.

Eq. (17) is the governing dual reciprocity boundary integral equation for the transient heat problem, which will be
ubsequently discretized by the NUBRS basis functions. Note that Eq. (17) does not involve any domain integrals. However,
t involves Nt points, which define functions T̂j(x) and q̂j(x), and which can be distributed on the boundary and inside the
omain.

.2. Isogeometric approximation

Similar to the conventional BEM, we need to define the boundary element first. In IGBEM, the unique values contained
n the knot vector are adopted to define boundary elements. For example, the boundary curve of domain Ω is created by
he knot vector Ξ = {0 0 0 1 1 2 3 3 4 5 5 6 6 7 7 8 9 9 10 10 11 11 11}/11 and 20 control points as shown in Fig. 1, where
the associated basis functions and elements information are illustrated in Fig. 2. In this case, the elements are defined by
different knot parameters such as [0, 1/11], [1/11, 2/11], and so on. When the element parameter space is mapped to the
physical space, the distribution of collocation points is depicted in Fig. 3. The element connectivity information is shown
in Table 1.
5
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Fig. 2. NURBS basis functions.

Fig. 3. Distribution of collocation points.

Similar to Eq. (5), the boundary point x(ξ ), the temperature T (ξ, t), the temperature gradient q(ξ, t), the particular
olution function T̂j(ξ ) and q̂j(ξ ) are interpolated respectively approximation as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x (ξ) =

n∑
a=1

Ra,p (ξ) xa

T (ξ , t) =

n∑
a=1

Ra,p (ξ) Ta(t)

q (ξ , t) =

n∑
a=1

Ra,p (ξ) qa(t)

T̂j (ξ) =

n∑
a=1

Ra,p (ξ) T̂aj

q̂j (ξ) =

n∑
Ra,p (ξ) q̂aj

(18)
a=1

6
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where xa, Ta(t), qa(t) T̂aj and q̂aj are the so-called control variables. Since the basis functions Ra,p have a local support,
a,p (ξ) = 0 if ξ /∈

[
ξa, ξa+p+1

)
. Based on this, Eq. (18) can be rewritten on each element e as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(ξ ) =

p+1∑
l=1

Re
l,p (ξ) xel

T (ξ, t) =

p+1∑
l=1

Re
l,p(ξ )T

e
l (t)

q(ξ, t) =

p+1∑
l=1

Re
l,p(ξ )q

e
l (t)

T̂j (ξ) =

p+1∑
l=1

Re
l,p(ξ )T̂

e
lj

q̂j (ξ) =

p+1∑
l=1

Re
l,p(ξ )q̂

e
lj

(19)

For the boundary collocation point xb = x(ξb), and Eq. (17) takes the following form:

C (xb)
p+1∑
l=1

Re′
l,p (ξb) T e′

l (t) +

Ne∑
e=1

p+1∑
l=1

[∫ 1

−1
q∗

(
x(ξb), x(ξ̂ )

)
Re
l,p(ξ̂ )J

e(ξ̂ )dξ̂
]
T e
l (t)

−

Ne∑
e=1

p+1∑
l=1

[∫ 1

−1
T ∗

(
x(ξb), x(ξ̂ )

)
Re
l,p(ξ̂ )J

e(ξ̂ )dξ̂
]
qel (t)

=

Nt∑
j=1

αj(t)

{
C (xb)

p+1∑
l=1

Re′
l,p (ξb) T̂ e′

lj +

Ne∑
e=1

p+1∑
l=1

[∫ 1

−1
q∗

(
x(ξb), x(ξ̂ )

)
Re
l,p(ξ̂ )J

e(ξ̂ )dξ̂
]
T̂ e
lj

−

Ne∑
e=1

p+1∑
l=1

[∫ 1

−1
T ∗

(
x(ξb), x(ξ̂ )

)
Re
l,p(ξ̂ )J

e(ξ̂ )dξ̂
]
q̂elj

}
(20)

where Ne is the number of elements, ξb denotes the local coordinate of the collocation point xb, e′ is the element containing
xb, the local coordinate system ξ̂ ∈ [−1, 1] is used and the Jacobian of transformation, Je(ξ̂ ), is given by [19]

Je
(
ξ̂

)
=

dΓ

dξ
dξ

dξ̂
=

√(
dx1
dξ

)2

+

(
dx2
dξ

)2

·
ξ2 − ξ1

2
(21)

n which ξ1 and ξ2 represent the endpoints of the element e in the parameter space. For solving Eq. (20), three different
ypes of integrals are involved, such as regular integration, nearly singular integration and singular integration. In this
tudy, the regular integral is treated in the same way as the nearly singular integral. For the strongly singular integration,
e adopt the singularity subtraction technique to solve. For the weakly singular integral, an efficient transformation
echnique is used to remove the singularity. The detailed integration schemes are introduced in [19].

In order to ensure that the positions of collocation points is on the real boundary in IGBEM, we use the Greville
bscissae method [19] to generate the collocation points in parameter space. For example, the ith point is defined
y

ξ ′

i =
ξi+1 + ξi+2 + · · · ξi+p

p
i = 1, 2, . . . , n (22)

sing the first formula in Eq. (19), the corresponding collocation point position of ξ ′

i in Eq. (22) can be obtained.
Note, the Greville abscissae generates n collocation points, and when Eq. (20) is prescribed at each collocation point,

t yields a system of n equations. The definition of functions T̂j and q̂j in Eqs. (14)–(15) involves Nt points xj, which need
o be defined. We assume, that Nt includes Nb points on the boundary and Ni points inside the domain, i.e. Nt = Nb + Ni.
e consider that the boundary points xj coincide with the collocation points xb defined by the Greville abscissae and

herefore N = n. The set of N points x inside the domain will be also used to collocate Eq. (17) and will be denoted by
b i j

7
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xi. At these points C(xi) = 1 and the discretized integral equation (17) takes the form

T (xi, t) +

Ne∑
e=1

p+1∑
l=1

[∫ 1

−1
q∗

(
xi, x(ξ̂ )

)
Re
l,p(ξ̂ )J

e(ξ̂ )dξ̂
]
T e
l (t)

−

Ne∑
e=1

p+1∑
l=1

[∫ 1

−1
T ∗

(
xi, x(ξ̂ )

)
Re
l,p(ξ̂ )J

e(ξ̂ )dξ̂
]
qel (t)

=

Nt∑
j=1

αj(t)

{
T̂j(xi) +

Ne∑
e=1

p+1∑
l=1

[∫ 1

−1
q∗

(
xi, x(ξ̂ )

)
Re
l,p(ξ̂ )J

e(ξ̂ )dξ̂
]
T̂ e
lj

−

Ne∑
e=1

p+1∑
l=1

[∫ 1

−1
T ∗

(
xi, x(ξ̂ )

)
Re
l,p(ξ̂ )J

e(ξ̂ )dξ̂
]
q̂elj

}
(23)

where values of temperature at internal points T (xi, t) form a new set of Ni unknowns. As a result, coupled Eqs. (20) and
(23) yield the full system of Nt equations for Nt unknowns, which can be written in the matrix form as

HT(t) − Gq(t) =

Nt∑
j=1

αj(t)
(
HT̂j − Gq̂j

)
(24)

where the vector T(t) = T (T ∈ RNt×1) is expressed as

T =
[
T1, T2, · · · , TNb , TNb+1, TNb+2, . . . , TNt

]T (25)

The first Nb elements in the vector T represent the temperature coefficients of control points (i.e. control variables Ti(t)
in Eq. (18)). The last Ni elements denote the temperature of the internal nodes, i.e.

Ti = T (xi, t), i = Nb + 1, . . . ,Nt (26)

The vector q(t) = q (q ∈ RNb×1) contains temperature gradients of the control points in Eq. (18) and can be expressed as

q = [q1, q2, . . . , qNb ]
T (27)

The vectors T̂j (T̂j ∈ RNt×1) in Eq. (24) can be written as

T̂j =

[
T̂1j, T̂2j, · · · , T̂Nbj, T̂(Nb+1)j, . . . , T̂Nt j

]T
, T̂lj = T̂j(xl), l = 1, 2, . . . ,Nt (28)

where {xl}Nt
l=1 denotes the full set of collocation points. The vectors q̂j (q̂j ∈ RNt×1) are written as

q̂j =
[
q̂1j, q̂2j, . . . , q̂Nbj

]T
, q̂lj = q̂j(xl), l = 1, 2, . . . ,Nb (29)

Next, we introduce matrices T̂ (T̂ ∈ RNt×Nt ), q̂ (q̂ ∈ RNt×Nb ) consisting of vectors T̂j and q̂j (as columns), and time-
dependent vector α = α(t) (α ∈ RNt×1) which is used to write the inversion of Eq. (12), evaluated at Nt collocation points,
i.e.

α = F−1b (30)

where F ∈ RNt×Nt , b = b(t) ∈ RNt×1. Components of matrix F are defined by

Flj = fj(xl) (31)

where function fj are given by Eq. (13). Vector b represents the right hand side of Eq. (11), i.e. its components contain
unknown time derivatives ∂T (xl, t)/∂t evaluated at collocation points xl:

bl =
1
λ

∂T (xl, t)
∂t

−
1
k
g(xl, t) (32)

Finally, Eq. (24) is given as

HT(t) = Gq(t) − Sb(t) (33)

where

S = −

(
HT̂ − Gq̂

)
F−1 (34)

Eq. (33) contains three time-dependent unknowns, namely vectors T(t), q(t) and b(t), which will be approximated
using two-level time integration scheme [45].
8
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4.3. Two-level time integration scheme

In what follows, we will use the following notations: ∆t is the time step, mth time interval is denoted as [tm, tm+1], all
uantities evaluated at time tm will be denoted with superscript m. According to the two-level time integration scheme,
n a time interval [tm, tm+1], each component of vectors T(t), q(t) and the heat source g(t) are approximated as a linear
ombination of the corresponding values at the end-points tm and tm+1 and three parameters, θT , θq and θg , as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Tl(t) = (1 − θT ) Tm
l + θTTm+1

l

ql(t) =
(
1 − θq

)
qml + θqqm+1

l

gl(t) =
(
1 − θg

)
gm
l + θggm+1

l

∂Tl(t)
∂t

=
Tm+1
l − Tm

l

∆t

(35)

Based on this approximation, the first Nb elements in the vector b can be expressed in the temperature coefficients of
the control points as

bl(t) =
1

λ∆t

Nb∑
i=1

Ri,p (ξl)
(
Tm+1
i − Tm

i

)
−

[(
1 − θg

) gm
l

k
+ θg

gm+1
l

k

]
, (l = 1, 2, . . . ,Nb) (36)

where points ξl correspond to the parametric coordinates of the boundary collocation points xl. The last Ni elements are
expressed in terms of the temperature value at the internal nodes, i.e.

bl =
1

λ∆t

(
Tm+1
l − Tm

l

)
−

[(
1 − θg

) gm
l

k
+ θg

gm+1
l

k

]
, (l = Nb + 1,Nb + 2, . . . ,Nt ) (37)

Combining Eq. (36) with (37), the vector b can be written as

b =
1

λ∆t
R

(
Tm+1

− Tm)
−

1
k

[(
1 − θg

)
gm

+ θggm+1] (38)

here matrix R ∈ RNt×Nt is given by

R =

[
(R∆)Nb×Nb 0

0 INi×Ni

]
(39)

n which components of R∆ are R∆ lm = Rl,p(ξm) and components of vector gi are g i
l = g(xl, ti), i = m or m + 1.

Substituting Eqs. (35) and (38) into Eq. (33) yields(
1

λ∆t
SR + θTH

)
Tm+1

− θqGqm+1
=

[
1

λ∆t
SR − (1 − θT )H

]
Tm

+
(
1 − θq

)
Gqm

+
S
k

[(
1 − θg

)
gm

+ θggm+1] (40)

he right side of Eq. (40) is known at any time tm, since it involves quantities which have been specified as the initial
conditions, known heat source or calculated at previous time steps. Note, that some of the terms in vectors Tm+1 and qm+1

are known from the boundary conditions, and the remaining unknown terms can be evaluated at each time tm+1. Note
that the elements of matrices S, R, H and G depend only on the geometrical data. Therefore, they can all be computed
once and stored. For the heat source vector g, it can be also computed once when g is time-independent. The detailed
flow chart of the method is shown in Fig. 4.

After the above calculation process, the solutions of all control points and selected interior points are obtained. The
temperature values of any points in domain can be obtained by using Eq. (23), and the solution of interior point of element
on the boundary can be obtained by substituting the parameter corresponding to that point into Eq. (19).

5. Numerical examples

In this section, several different geometries with different boundary conditions are discussed. In all examples in this
chapter it is assumed that k = 1, c = 1, ρ = 1. where the thermal conductivity, the density and the specific heat are
assumed as unit. It is worth noting that in order to start the calculation process automatically, the parameters θT , θq and
θg in Eq. (40) take value 1 at the first time step and the rest of time steps are taken as 0.5. To show the case of overall
errors, the relative L2 error norm in temperatures is calculated by

eL2 =
∥Tnum − Texact∥L2 (41)
∥Texact∥L2

9
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Fig. 4. Flow chart of IG-DRBEM.

here

∥Texact∥L2 =

√ Nt∑
i=1

T 2
i (42)

.1. An infinite slab subject to a thermal shock

An infinite slab, which is the same as example 1 in [48], is considered here to compare the IG-DRBEM with the
onventional DRBEM, and the effect of different time steps on the result is discussed here. The problem is modeled as a
wo-dimensional with mixed boundary conditions, namely T = 1 prescribed along the faces x = ±5 and q = 0 along
the faces y = ±4 of a rectangular region. The initial temperature is specified as T0 = 0. Results are presented for the
emperature at the center point (0, 0). Because of the symmetry of the problem, a quarter of the region is computed as
he same in [48]. In this example, all the results are obtained by one-order expansion function (fj = 1 + rj), two-order
lements and one interior point. In order to improve the accuracy of results, we refer to the distribution method of element
n literature [48]. Because this term ∂T/∂t always equals to zero when t > 0. A small number of elements are applied on
he boundary of thermal shock and a relatively large number of elements are distributed on other boundaries.

Here, two cases of different element numbers are computed. The information of control points of 7 and 14 IGA elements
s shown in Fig. 5(a) and (b). Both traditional DRBEM and IG-DRBEM use an interior point and the same node freedom
egree. It can be seen from Tables 2 and 3 that IG-DRBEM obtains more accurate results than DRBEM, and even IG-DRBEM
pplies less 7 elements as shown in Table 2.
10
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Fig. 5. Control points and interior points for different number of elements.

Table 2
Temperature and absolute errors (Abserr) at the point (0, 0) of 7 elements.
Time Exact [68] DRBEM [48] Abserr IG-DRBEM Abserr

2 0.025 0.017 0.008 0.025 0
4 0.154 0.166 0.012 0.151 0.003
6 0.298 0.302 0.004 0.298 0
8 0.422 0.418 0.004 0.424 0.002
10 0.526 0.516 0.010 0.528 0.002
15 0.710 0.694 0.016 0.715 0.005
20 0.823 0.807 0.016 0.827 0.004
30 0.934 0.923 0.011 0.937 0.003

Table 3
Temperature and Abserr at the point (0, 0) of 14 elements.
Time Exact [68] DRBEM [48] Abserr IG-DRBEM Abserr

2 0.025 0.017 0.008 0.026 0.001
4 0.154 0.166 0.012 0.152 0.002
6 0.298 0.302 0.004 0.298 0
8 0.422 0.418 0.004 0.424 0.002
10 0.526 0.516 0.010 0.529 0.003
15 0.710 0.694 0.016 0.715 0.005
20 0.823 0.807 0.016 0.827 0.004
30 0.934 0.923 0.011 0.937 0.003

Fig. 6. Results using different time steps.

To investigate the effect of time steps on numerical results, the results of point (0, 0) based on the element distribution
in Fig. 5(a) are shown in Fig. 6. It can be seen that the absolute error fluctuates greatly in the initial stage, and the time step
has a certain influence on the numerical results. With the increase of computation time, the influence of time step on the
results also tends to be stable. Of course, the time step should not be too small to avoid the cumulative error. Therefore,
in the calculation process, the appropriate time step size can be selected according to different element distributions.
11
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Table 4
Temperature and relative errors of the point (0, 0) using different interior points at t = 0.5.
Ni IG-DRBEM Exact Relative error (%)

1 1.6379

1.6487

0.66
13 1.6487 0.0
25 1.6491 0.024
37 1.6494 0.042
49 1.6495 0.049
109 1.6496 0.055

Table 5
Results for different expansions of fj .

fj Mabserr Mrelerr (%) eL2
(i) 0.002496 0.09182 3.2371e−04
(ii) 0.002520 0.1529 5.3262e−04
(iii) 0.002208 0.1623 5.3053e−04

5.2. A circular plate

In this example, a circular plate with the temperature boundary condition is considered without heat sources to test the
ffect of the number of interior points and the expansion order and verify the validity and convergence of the presented
ethod, The initial condition and the exact solution are given by T0 = ex and T = ex+t , respectively. The time step is

aken as 0.01 and the temperature results at t = 0.5 are shown in following cases.

A) The influence of the number of interior points
First of all, we consider the influence of the number of interior points on the results. Six sets of interior points are

sed as shown in Fig. 7, where the circular boundary is discretized as eight two-order elements with 13 control points.
n this case, the one-order expansion function fj = 1 + rj is used.

To show the effect of different interior points on the results, the relative errors are shown in Table 4, where the relative
rror can be expressed as 100 · |Texact − Texact | /|Texact |. It can be seen from Table 4 that the sensitivity of the results to
he number of interior points is small. The total variation of results from Ni = 1 to Ni = 109 is no more than 0.7%. This
onclusion is similar to page 94 of the book [47]. Especially, the results tend to be more stable when the interior point
re more than 25. For IG-DRBEM, a few interior points are distributed in the domain to ensure that the whole domain
an be described accurately when the domain integral is transformed. Too few interior points cannot accurately describe
he change of the field, and too many interior points will cause the ill-condition of the transformation matrix of the
omain integral matrix to some extent. Therefore, we only need a few interior points when using IG-DRBEM. If we need
o calculate the temperature at any position in the domain, we can calculate with the obtained boundary control points
nd the values of the points in the domain.

B) The influence of different expressions of f
In this case, the three forms of expansion are considered as follows

(i) fj = 1 + rj
(ii) fj = 1 + rj + r2j
(iii) fj = 1 + rj + r2j + r3j

The information of the element division and the distribution of internal points in Fig. 7(b) are adopted to test the effect
f the different order expansions on the results.
It can be seen from Table 5 that the maximum absolute error (Mabserr) and the maximum relative error (Mrelerr)

re no more than 0.0026 and 0.17%, respectively. Obviously, the best result is obtained by using case (i), which used the
implest expansion fj = 1+ rj. Similar to the conclusion for the page 115 of the book [47], these results indicate that the
igher-order fj expansions are unnecessary. Based on this, the expansion fj = 1+ rj is adopted in the following examples.

5.3. A quarter annulus

To show the convergence and the ability to compute the temperature of arbitrary interior point on the boundary
element, a quarter annulus is considered without heat sources. Similar to Section 5.2, the exact solution still can be given
by T = ex+t . The geometry and boundary conditions are shown in Fig. 8, and the initial condition is given by T0 = ex. The
h-refinement [12] is used to form the uniform refinement applied around the boundary for both p = 2 and p = 3, where
9 interior points are used as shown in Fig. 9. In this case, to test the convergence of the present method, the results at
t = 1 are presented in Fig. 10. In this example, the time step ∆t = 0.001 is used. It can be seen from Fig. 10 that the eL2
of results become smaller and smaller with the increase of elements. Also, compared with the result of p = 2, the result
12
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Fig. 7. Different numbers of interior points.

of p = 3 converges faster. It is worth noting that even if the most sparse element distribution is used at p = 2, the eL2
an also reach to 10−2magnitude.
After obtaining the unknown quantities of boundary control points and distribution points in the inner domain, the

esults of some randomly selected interior points can be computed by the obtained corresponding quantities. As shown
n Fig. 9(b), the randomly selected six interior points of element are used to demonstrate the validity by obtained
13
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Fig. 8. Geometry and boundary conditions.

Fig. 9. Isogeometric computation model without element refinement.

Fig. 10. eL2 of different number of nodes.

temperature of control points and interior points in domain. It can be seen from Fig. 11 that the absolute errors can

be achieved 10−3 magnitude.
14
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Fig. 11. Absolute errors of results for different points.

Fig. 12. Geometry description.

Table 6
Computational information of marine propeller model and the error of results on the
t = 1.
Case Ne Nt eL2 Mabserr

(a) 19 88 9.06e−3 0.021
(b) 38 107 4.64e−3 0.017

5.4. Marine propeller

To verify the ability of the proposed method to handle complex engineering geometries, similar to the literature [69],
marine propeller is analyzed with the temperature boundary condition. As shown in Fig. 12, the inner and outer radius
f the blade are taken as r1 = 0.91 and r2 = 0.5, respectively. The radius of interior circle is r3 = 1/3. The distance
etween the center and the blade corners is l = 1. The knot vector of outer blades is

Ξ1 = {0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4,
5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10,
10, 11, 11, 12, 12, 13, 13, 14, 14,
15, 15, 15}/15

(43)

nd the knot vector of interior circle is

Ξ2 = {0, 0, 0, 1/4, 1/4, 2/4, 2/4, 3/4, 3/4, 1, 1, 1} (44)

s shown in Fig. 13, 50 interior points are distributed into the marine propeller. In this case, the initial condition and the
eat source are specified as T0 = 0 and g = 10xy cos(2t), respectively. The exact solution is given by T = 10xy sin(t) cos(t).
he temperature boundary conditions are imposed by the form of the exact solution in the solving process.
In this example, the time step ∆t = 0.01 is adopted. The two partitions of elements are considered with p = 2 as

hown in Fig. 13(a) and (b). The detailed calculation information and result errors are shown in Table 6, which the e
L2
15
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Fig. 13. Marine propeller with p = 2.

Fig. 14. Temperature of different points on the different time.

reduces when the distribution of element is refined one time such as Fig. 13(b) and the maximum absolute error of all
nodes is no more than 0.017. It is worth noting that even in the case of sparse elements such as Fig. 13(a), the error eL2 can
till reach to 10−3 magnitude. In addition, it can be seen from Fig. 14 that the temperature of five randomly selected points
s in good agreement with the analytic solution, even if the relatively sparse element partition is adopted. Therefore, the
resent method has a good ability to adapt to complex geometric shapes, even when dealing with problems with heat
ources.

.5. Quarter gear

To show the performance of the proposed method to solve the complex geometry with the mixed boundary conditions
nd heat sources, a quarter gear with a hole is considered as shown in Fig. 15, where the inner radius of the gear is r1 = 0.2,
he radius of the addendum circle is r4 = 1.4, the center angle of the annulus is ϕ = 30◦, the inner radius and the outer
adius of the annulus hole are r2 = 0.5 and r3 = 0.7, respectively. The length of the left vertical edge and the bottom
orizontal edge is L1 = 0.8. The dedendum width and the addendum width are L3 = 0.39 and L4 = 0.195, respectively.
The initial temperature and the heat source are specified as T0 = 0 and g = xy, respectively. The temperature gradient

ondition ∂T/∂n is applied to the left vertical edge and the bottom horizontal boundary, and the rest of the boundary is
pplied the temperature condition such as T = xyt . The exact solution is given by T = xyt . In this example, the time step
t = 0.01 is adopted. As shown in Fig. 16, the two partitions of element with p = 3 are used, where the knot vectors of
uter and inner boundary are expressed as

Ξ1 = {0 0 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7
8 8 8 9 9 9 10 10 10 1 1 1 1}/11; (45)

Ξ2 = {0 0 0 0 1/4 1/4 1/4 1/2 1/2 1/2 3/4 3/4 3/4 1 1 1 1} (46)
16
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Fig. 15. Geometry description and boundary conditions.

Fig. 16. Quarter gear with p = 3.

Table 7
Computational information of gear model and the error of results on the t = 1.
Case Ne Nt eL2 Mabserr

(a) 30 64 1.01e−2 1.24e−2
(b) 45 79 8.47e−3 9.90e−3

The detailed calculation information and result errors are shown in Table 7, which the eL2 and the Mabserr are reduced
with the refinement of element such as Fig. 16. Also, the Mabserr is no more than 9.90e−3. It can be seen from Fig. 17
hat the temperature results of the three interior points of the randomly selected A(0.1342, 0.3152), B(0.8463, 0.2043),
(0.4611, 1.1148) are in good agreement with the exact solutions, even in the case of sparse elements. Therefore, the
roposed method can obtain better numerical results with mixed boundary conditions and heat sources for complex
eometries.
A certain number of interior points are selected in our calculation process to improve the accuracy of the overall

alculation. If the user wants to obtain the temperature field of any point in the domain, similar to the traditional
RBEM, the obtained values of boundary control points and the points in the domain can be used for calculation. As
hown in Fig. 16(b), after calculating unknown quantities of control points and the points in the domain, we calculated
he temperature of newly added points in the domain such as D(0.3404,0.7893), E(0.6733, 0.5349), F (0.9277,0.3554),
G(0.2918,0.2693), as shown in Fig. 18. It can be seen that the Mabserr also is no more than 9.0e−3. Therefore, IG-DRBEM
inherits the function of the traditional BEM to solve any interior point in the domain by using the obtained boundary and
interior quantity information without reducing the precision.
17
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Fig. 17. Temperature of different points on the different time.

Fig. 18. Absolute errors of results for independent interior points.

6. Conclusions

In this paper, the isogeometric boundary element method is realized for the first time to solve the transient heat
transfer problem with heat sources. As a classical and effective domain integral transformation method, the dual
reciprocity method makes it possible to analyze complex problems by isogeometric boundary element method, and does
not need to divide elements in domain, such as heterogeneous problems, complex dynamic problems and so on. Because
even if the fundamental solutions of these problems cannot be obtained, we can still use the fundamental solutions of
the approximate problems to establish the integral equations, and the domain integral will be transformed by the dual
reciprocity method. Several typical examples show the effectiveness of the presented method and the convenience of
dealing with complex geometric problems. The temperature of boundary points excluding control points can be computed
by NURBS interpolation using the corresponding element information. In addition, IG-DRBEM inherits the function of the
traditional BEM to solve any interior point in the domain by using the obtained boundary and interior quantity information
without reducing the precision. The proposal of isogeometric dual reciprocity BEM will provide a new idea for the analysis
of transient, heterogeneous and even nonlinear problems, and will promote the development of isogeometric BEM to some
extent.
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